Refine Your Search

Topic

Search Results

Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
Technical Paper

Setup of a 1D Model for Simulating Dynamic Behaviour of Motorcycle Forks

2009-04-20
2009-01-0226
Shock absorbers and damper systems are important parts of automobiles and motorcycles because they have effects on safety, ride comfort, and handling. In particular, for vehicle safety, shock absorber system plays a fundamental role in maintaining the contact between tire and road. Generally, to assure the best trade-off between safety and ride comfort, a fine experimental tuning on all shock absorber components is necessary. Inside a common damper system the presence of several conjugated actions made by springs, oil and pressurized air requires a significant experimental support and a great number of prototypes and test. Aimed to reduce the design and tuning phases of a damper system, it is necessary to join these phases together with a numerical modelling phase. The aim of this paper is to present the development of a mono-dimensional (1D) model for simulating dynamic behaviour of damper system.
Technical Paper

Remote Combustion Sensing Methodology for PCCI and Dual-Fuel Combustion Control

2015-09-06
2015-24-2420
The increasing request for pollutant emissions reduction spawned a great deal of research in the field of innovative combustion methodologies, that allow obtaining a significant reduction both in particulate matter and NOx emissions. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Prior research has demonstrated that a closed-loop combustion control strategy can be based on the real-time analysis of in-cylinder pressure trace, that provides important information about the combustion process, such as Start (SOC) and Center of combustion (CA50), pressure peak location and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost.
Technical Paper

Numerical Study of the Combustion Chamber Shape for Common Rail H.S.D.I. Diesel Engines

2000-03-06
2000-01-1179
The Common-rail injection system has allowed achieving a more flexible fuel injection control in DI-diesel engines by permitting a free mapping of the start of injection, injection pressure, rate of injection. All these benefits have been gained by installing this device in combustion chambers born to work with the conventional distributor and in-line-pump injection systems. Their design was aimed to improve air-fuel mixing and therefore they were characterized by the adoption of high-swirl ports and re-entrant bowls. Experiments have shown that the high injection velocities induced by common rail systems determine an enhancement of the air fuel mixing. By contrast, they cause a strong wall impingement too. The present paper aims to exploit a new configuration of the combustion chamber more suited to CR injection systems and characterized by low-swirl ports and larger bowl diameter in order to reduce the wall impingement.
Journal Article

Non-Intrusive Methodology for Estimation of Speed Fluctuations in Automotive Turbochargers under Unsteady Flow Conditions

2014-04-01
2014-01-1645
The optimization of turbocharging systems for automotive applications has become crucial in order to increase engine performance and meet the requirements for pollutant emissions and fuel consumption reduction. Unfortunately, performing an optimal turbocharging system control is very difficult, mainly due to the fact that the flow through compressor and turbine is highly unsteady, while only steady flow maps are usually provided by the manufacturer. For these reasons, one of the most important quantities to be used onboard for optimal turbocharger system control is the rotational speed fluctuation, since it provides information both on turbocharger operating point and on the energy of the unsteady flow in the intake and exhaust circuits. This work presents a methodology that allows determining the instantaneous turbocharger rotational speed through a proper frequency processing of the signal coming from one accelerometer mounted on the turbocharger compressor.
Technical Paper

Modeling the Diesel Fuel Spray Breakup by Using a Hybrid Model

1999-03-01
1999-01-0226
Diesel engine CFD simulation is challenged by the need to improve the accuracy in the spray modeling due to the strong influence played by spray dynamics on evaporation rate, flow field, combustion process and emissions. This paper aims to present a hybrid model able to describe both primary and secondary breakup of high-dense high-pressure sprays. According to this approach, the model proposed by Huh and Gosman is used to compute the atomization of the liquid jet (primary breakup) while a modified version of the TAB model of O'Rourke and Amsden is used for the secondary breakup. The atomization model considers the jet turbulence at the nozzle exit and the growth of unstable wave on the jet surface. In order to validate the hybrid model, a free non-evaporating high-pressure-driven spray at engine like conditions has been simulated. The accuracy of the breakup time evaluation has been improved by tuning the TAB constant Ck according to the Pilch's experimental correlations.
Journal Article

Injection Pattern Design for Real Time Control of Diesel Engine Acoustic Emission

2017-03-28
2017-01-0596
Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
Technical Paper

Image Processing Based Air Vehicles Classification for UAV Sense and Avoid Systems

2015-09-15
2015-01-2471
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

Fast Prototyping of a Racing Diesel Engine Control System

2008-12-02
2008-01-2942
This paper shows how Rapid Control Prototyping (RCP) and Computational Fluid Dynamics (CFD) techniques have been applied to design and implement an engine control system for a common rail diesel engine. The project aim is to setup a high performance engine in order to participate to the Italian Tractor Pulling Championship (Prostock category). The original engine is a John Deere 6081 Tier2 model, already equipped with a common rail system. Engine performance is substantially determined by the control system, which is in charge of limiting engine speed, boost pressure and Air to Fuel Ratio (AFR). Given that typically the information and equipment needed to change control parameters are not accessible to customers, the first step of the project has been to replace the original control system, while maintaining injectors and pumps. This solution can guarantee the best performance, but it requires time to design the new control system, both in terms of hardware and software.
Technical Paper

Fast Algorithm for On-Board Torque Estimation

1999-03-01
1999-01-0541
Electronic Throttle Control systems substitute the driver in commanding throttle position, with the driver acting on a potentiometer connected to the accelerator pedal. Such strategies allow precise control of air-fuel ratio and of other parameters, e.g. engine efficiency or vehicle driveability, but require detailed information about the engine operating conditions, in order to be implemented inside the Electronic Control Unit (ECU). In order to determine throttle position, an interpretation of the driver desire (revealed by the accelerator pedal position) is performed by the ECU. In our approach, such interpretation is carried out in terms of a torque request that can be appropriately addressed knowing the actual engine-vehicle operating conditions, which depend on the acting torques. Estimates of the torque due to in-cylinder pressure (indicated torque), as well as the torque required by the vehicle (load torque), must then be available to the control module.
Technical Paper

Experimental-Numerical Analysis of Gasoline Spray-Wall Impingement at Ultra-High Injection Pressure for GCI Application

2023-08-28
2023-24-0082
Nowadays, in the perspective of a full electric automotive scenario, internal combustion engines can still play a central role in the fulfilment of different needs if the efficiency will be improved, and the tailpipe emission will be further limited. Gasoline Compression Ignition engines can offer a favourable balance between NOx, particulate, operating range. Stable operations are ensured by ultra-high gasoline injection pressure and tailored injection patterns in order to design the most proper local fuel distribution. In this context, engine simulations by means of CFD codes can provide insights on the design of the injection parameters, and emphasis must be placed on the capture of spray-wall impingement behaviour under those non-conventional conditions. This paper aims to analyse the spray-wall impingement behaviour of ultra-high gasoline spray using a combined experimental-CFD approach.
Technical Paper

Experimental and Numerical Investigation on the EGR System of a New Automotive Diesel Engine

2000-03-06
2000-01-0224
In this paper an integrated experimental and numerical approach is applied to optimize a new 2.5l, four valve, turbocharged DI Diesel engine, developed by VM Motori. The study is focused on the EGR system. For this engine, the traditional dynamometer bench tests provided 3-D maps for brake specific fuel consumption and emissions as a function of engine speed and brake mean effective pressure. Particularly, a set of operating conditions has been considered which, according to the present European legislation, are fundamental for emissions. For these conditions, the influence of the amount of EGR has been experimentally evaluated. A computational model for the engine cycle simulation at full load has been built by using the WAVE code. The model has been set up against experiments, since an excellent agreement has been reached for all the relevant thermo-fluid-dynamic parameters. The simulation model has been used to gain a better insight on the EGR system operations.
Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Technical Paper

Engine Acoustic Emission Used as a Control Input: Applications to Diesel Engines

2016-04-05
2016-01-0613
The need for strategies that allow managing combustion in an adaptive way has recently widely increased. Especially Diesel engines aimed for clean combustion require a precise control of the combustion outputs. Acoustic emission of internal combustion engines contains a lot of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. Combustion noise in particular can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy. This work discusses the correlations existing between in cylinder combustion and the acoustic emission radiated by the engine and presents a possible approach to use this signal in the engine management system for control purposes.
Technical Paper

Effects of Initial Conditions in Multidimensional Combustion Simulations of HSDI Diesel Engines

1999-03-01
1999-01-1180
The effects of numerical methodology in defining the initial conditions and simulating the compression stroke in D.I. diesel engine CFD computations are studied. Lumped and pointwise approaches were adopted in assigning the initial conditions at IVC. The lumped approach was coupled with a two-dimensional calculation of the compression stroke. The pointwise methodology was based on the results of an unsteady calculation of the intake stroke performed by using the STAR-CD code in the realistic engine and port geometry. Full engine and 60 deg. sector meshes were used in the compression stroke calculations in order to check the accuracy of the commonly applied axi-symmetric fluid dynamics assumption. Analysis of the evolution of the main fluid dynamics parameters revealed that local conditions at the time of injection strongly depend on the numerical procedure adopted.
Technical Paper

Diesel Engine Acoustic Emission Analysis for Combustion Control

2012-04-16
2012-01-1338
Future regulations on pollutant emissions will impose a drastic cut on Diesel engines out-emissions. For this reason, the development of closed-loop combustion control algorithms has become a key factor in modern Diesel engine management systems. Diesel engines out-emissions can be reduced through a highly premixed combustion portion in low and medium load operating conditions. Since low-temperature premixed combustions are very sensitive to in-cylinder thermal conditions, the first aspect to be considered in newly developed Diesel engine control strategies is the control of the center of combustion. In order to achieve the target center of combustion, conventional combustion control algorithms correct the measured value varying main injection timing. A further reduction in engine-out emissions can be obtained applying an appropriate injection strategy.
Technical Paper

Development of a Novel Approach for Non-Intrusive Closed-Loop Heat Release Estimation in Diesel Engines

2013-04-08
2013-01-0314
Over the past years, policies affecting pollutant emissions control for Diesel engines have become more and more restrictive. In order to meet such requirements, innovative combustion control methods have currently become a key factor. Several studies demonstrate that the desired pollutant emission reduction can be achieved through a closed-loop combustion control based on in-cylinder pressure processing. Nevertheless, despite the fact that cylinder pressure sensors for on-board application have been recently developed, large scale deployment of such systems is currently hindered by unsatisfactory long term reliability and high costs. Whereas both the accuracy and the reliability of pressure measurement could be improved in future years, pressure sensors would still be a considerable part of the cost of the entire engine management system.
Technical Paper

Development of a Model for the Wall Film Formed by Impinging Spray Based on a Fully Explicit Integration Method

2005-09-11
2005-24-087
A wall film model has been implemented in a customized version of KIVA-3 code developed at University of Bologna. Under the hypothesis of `thin laminar flow' the model simulates the dynamics of a liquid wall film generated by impinging sprays. Particular care has been taken in numerical implementation of the model. The major phenomena taken into account in the present model are: wall film formation by impinging spray; body forces, such as gravity or acceleration of the wall; shear stress at the interface with the gas and no slip condition on the wall; momentum contribution and dynamic pressure generated by the tangential and normal component of the impinging drops; film evaporation by heat exchange with wall and surrounding gas. The model doesn't consider the effect of the wavy film motion and suppose that all the impinging droplets adhere to the film.
Technical Paper

Development and Validation of a Virtual Sensor for Estimating the Maximum in-Cylinder Pressure of SI and GCI Engines

2021-09-05
2021-24-0026
This work focuses on the development and validation of a data-driven model capable of predicting the maximum in-cylinder pressure during the operation of an internal combustion engine, with the least possible computational effort. The model is based on two parameters, one that represents engine load and another one the combustion phase. Experimental data from four different gasoline engines, two turbocharged Gasoline Direct Injection Spark Ignition, a Naturally Aspirated SI and a Gasoline Compression Ignition engine, was used to calibrate and validate the model. Some of these engines were equipped with technologies such as Low-Pressure Exhaust Gas Recirculation and Water Injection or a compression ignition type of combustion in the case of the GCI engine. A vast amount of engine points were explored in order to cover as much as possible of the operating range when considering automotive applications and thus confirming the broad validity of the model.
X