Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Trajectories After Intersection Collision Impact

1970-02-01
700176
The postcollision motion starts immediately upon completion of a collision impact where the vehicles obtain new sets of velocities through an exchange of momentum. Similitude with model study and fullscale automobile experiments indicate that the post-collision trajectory is essentially a plane motion, governed by inertia and tire friction. Trajectories depend on many parameters (such as tire friction coefficient, front wheel steering angle, vehicle geometrics, and whether wheels are locked or free to rotate) but not on the vehicle weight. Theoretical computation of trajectories are compared with experiments.
Technical Paper

Variable Dynamic Testbed Vehicle: Dynamics Analysis

1997-02-24
970560
The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles. Using a selected compact-sized automobile as a baseline, our study indicated this baseline vehicle can be controlled to emulate the lateral response characteristics (including the vehicle's understeer coefficient and the 90% lateral acceleration rise time in a J-turn maneuver) of a fleet of production vehicles, from low to high lateral acceleration conditions.
Technical Paper

Using μ Feedforward for Vehicle Stability Enhancement

2000-05-01
2000-01-1634
Vehicle stability augmentation has been refined over many years, and currently there are commercial systems that control right/left braking and throttle to create vehicles that remain controlled when road conditions are very poor. These systems typically use yaw rate and lateral acceleration in their control philosophy. The tire/road friction coefficient, μ, has a significant role in vehicle longitudinal and lateral control, and there has been associated efforts to measure or estimate the road surface condition to provide additional information for the stability augmentation system. In this paper, a differential braking control strategy using yaw rate feedback, coupled with μ feedforward is introduced for a vehicle cornering on different μ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input.
Technical Paper

The Performance Effects of Edge-Based Heat Transfer on Lithium-Ion Pouch Cells Compared to Face-Based Systems

2014-04-01
2014-01-1866
Optimizing the hardware design and control strategies of thermal management systems (TMS) in battery packs using large format pouch cells is a difficult but important problem due to the limited understanding of how internal temperature distributions impact the performance and lifetime of the pack. Understanding these impacts is difficult due to the greatly varying length and time scales between the coupled phenomena, causing the need for complex and computationally expensive models. Here, an experimental investigation is performed in which a set of fixed one-dimensional temperature distributions are applied across the face of a Nickel-Cobalt-Manganese (NCM) cathode lithium ion pouch cell in order to study the performance impacts. Effects on the open circuit voltage (OCV), Ohmic resistance, bulk discharge and charge resistance and instantaneous power are investigated.
Technical Paper

Surface Acoustic Wave Microhygrometer

1997-07-01
972393
A microhygrometer has been developed at JPL's Microdevices Laboratory based on the principle of dewpoint/frostpoint detection. The surface acoustic wave device used in this instrument is approximately two orders of magnitude more sensitive to condensation than the optical sensor used in chilled-mirror hygrometers. In tests in the laboratory and on the NASA DC8, the SAW hygrometer has demonstrated more than an order of magnitude faster response than commercial chilled-mirror hygrometers, while showing comparable accuracy under steady-state conditions. Current development efforts are directed toward miniaturization and optimization of the microhygrometer electronics for flight validation experiments on a small radiosonde balloon.
Technical Paper

Requirements for a Flexible and Realistic Air Supply Model for Incorporation into a Fuel Cell Vehicle (FCV) System Simulation

1999-08-17
1999-01-2912
This paper addresses the critical need to incorporate realistic models of the air supply sub-system in fuel cell system performance analysis. The paper first presents the dominant performance issues involved with the air supply operation in the fuel cell system. The report then goes on to propose a methodology for an air supply model that addresses many of the performance issues. Most importantly, a model is needed with a defined set of performance criteria and data input format, one that can accommodate multiple air supply configurations, and one that realistically and accurately simulates the air supply operation and its effect on the system power and efficiency. The paper concludes that it is possible to compare alternative air supply components under the constraint of maximizing the instantaneous net fuel cell system efficiency for a dynamic vehicle driving cycle under various ambient conditions.
Technical Paper

Regulated Emissions from Liquefied Petroleum Gas (LPG) Powered Vehicles

2014-04-01
2014-01-1455
Engine manufacturers have explored many routes to reducing the emissions of harmful pollutants and conserving energy resources, including development of after treatment systems to reduce the concentration of pollutants in the engine exhaust, using alternative fuels, and using alternative fuels with after treatment systems. Liquefied petroleum gas (LPG) is one alternative fuel in use and this paper will discuss emission measurements for several LPG vehicles. Regulated emissions were measured for five school buses, one box truck, and two small buses over a cold start Urban Dynamometer Driving Schedule (CS_UDDS), the Urban Dynamometer Driving Schedule (UDDS), and the Central Business District (CBD) cycle. In general, there were no significant differences in the gas phase emissions between the UDDS and the CBD test cycles. For the CS-UDDS cycle the total hydrocarbons and non-methane hydrocarbon emissions are higher than they are from the UDDS cycle.
Technical Paper

Reactive Regulation of Single-Lane Vehicle-Road Interactions

2014-04-01
2014-01-0390
This paper presents a driver assistance system designed to minimize the effect of driver reaction time on lane and speed maintenance operations. Nearly-instantaneous correcting actions are provided through a hierarchical arrangement of behaviors, by avoiding the time lag associated with deliberative or planning steps found in many control algorithms. Concepts originating in the field of robotics, including artificial potential fields and behavior-based systems, are interpreted for application to automotive control, where vehicle dynamics places considerable practical constraints on implementation. Ideas found in the study of emergent behavior in nature provide continuous, non-stepwise control signals, suitable for additive corrective inputs at highway velocities. This approach is effective for a substantial subset of road automobiles operating over a variety of speeds.
Technical Paper

Potential for Closed Loop Air-Fuel Ratio Management of a Diesel Engine

1999-03-01
1999-01-0517
The potential for improving the efficiency of a heavy duty turbocharged diesel engine by closed loop Air-Fuel Ratio (AFR) management has been evaluated. Testing conducted on a 12 liter diesel engine, and subsequent data evaluation, has established the feasibility of controlling the performance through electronic control of air management hardware. Furthermore, the feasibility of using direct in-cylinder pressure measurement for control feedback has been established. A compact and robust fiber optics sensor for measuring real time in-cylinder pressure has been demonstrated on a test engine. A preferred method for reducing the cylinder pressure data for control feedback has been established for continued development.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Physiological Effects of A Mechanical Counter Pressure Glove

2001-07-09
2001-01-2165
The first concept and early experiments of a Mechanical Counter Pressure (MCP) spacesuit were published by Webb in the late 1960’s. MCP provides an alternative approach to the conventional full pressure suit that bears some potential advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. Preliminary results are presented from glovebox testing with an existing MCP glove. The data indicates that properly applied mechanical counter pressure greatly reduces the effect of low-pressure exposure, which makes MCP a viable technology for spacesuit gloves.
Journal Article

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Meeting Both ZEV and PNGV Goals with a Hybrid Electric Vehicle - An Exploration

1996-08-01
961718
This paper is written to provide information on the fuel efficiency, emissions and energy cost of vehicles ranging from a pure electric (ZEV) to gasoline hybrid vehicles with electric range varying from 30 mi (50km) to 100 mi (160km). The Federal government s PNGV and CARB s ZEV have different goals, this paper explores some possibilities for hybrid-electric vehicle designs to meet both goals with existing technologies and batteries. The SAE/CARB testing procedures for determining energy and emission performance for EV and HEV and CARB s HEV ruling for ZEV credit are also critically evaluated. This paper intends to clarify some confusion over the comparison, discussion and design of electric- hybrid- and conventional- vehicles as well.
Technical Paper

Maximizing Direct-Hydrogen PEM Fuel Cell Vehicle Efficiency – Is Hybridization Necessary?

1999-03-01
1999-01-0530
The question of whether or not direct-hydrogen fuel cell systems in automotive applications should be used in load following or load leveled (battery hybrid) configurations is addressed. Both qualitative and quantitative analyses are performed to determine the potential strengths and weaknesses of each option. It is determined that the amount of energy that can be recovered through regenerative braking has a strong impact on the relative fuel economy of load following versus load leveled operation. Further, it is demonstrated that driving cycles with lower power requirements will show an improvement in vehicle fuel economy from hybridization while those with higher power requirements will not. Finally it is acknowledged that the practical considerations of cost and volume must also weigh heavily into the decision between the two configurations.
Technical Paper

Laboratory Testing of a Continuous Emissions Monitor for Trace Level Sulfur Dioxide

2016-04-05
2016-01-0986
The measurement of SO2 levels in vehicle exhaust can provide important information in understanding the relative contribution of sulfur and sulfate from fuel vs. oil source to PM. For this study, a differential optical absorption spectrometer (DOAS) that can measure SO2 down to 20 ppbV in real-time was built and evaluated. The DOAS consisted of an extractive sampling train, a cylindrical sampling cell with a single-path design to minimize cell volume, a spectrometer, and a deuterium lamp light source with a UVC range of ∼200-230 nanometer (nm). Laboratory tests showed detection limits were approximately in the range of 12 to 15 ppbV and showed good linearity over SO2 concentration ranges of 20 to 953 ppbV. Interference tests showed some interference by NO and by NH3, at levels of 300 ppmV and 16.6 ppmV, respectively.
Technical Paper

Improvement of Steering Performance Using Steering Rack Force Control

2019-04-02
2019-01-1234
Drivers continually require steering performance improvement, particularly in the area of feedback from the road. In this study, we develop a new electrically-assisted steering logic by 1) analyzing existing steering systems to determine key factors, 2) modeling an ideal steering system from which to obtain a desirable driver torque, 3) developing a rack force observer to faithfully represent road information and 4) building a feedback compensator to track the tuned torque. In general, the estimator uses the driver torque, assist torque and other steering system signals. However, the friction of the steering system is difficult to estimate accurately. At high speed, where steering feeling is very important, greater friction results in increased error. In order to solve this problem, we design two estimators generated from a vehicle model and a steering system model. The observer that uses two estimators can reflect various operating conditions by using the strengths of each method.
Journal Article

Evaluation and Modification of Constant Volume Sampler Based Procedure for Plug-in Hybrid Electric Vehicle Testing

2011-08-30
2011-01-1750
Plug-in hybrid electric vehicles (PHVs) consume both fossil fuel and grid electricity, which imposes emission testing challenges on the current constant volume sampler (CVS) test method. One reason is that in the charge-depleting cycle, PHVs having all-electric range operate the engine for a small portion of the traction energy need, causing the CVS to overdilute the exhaust gas. The other reason is that the dilution factor (DF) in the EPA calculation has an error caused by ignoring the CO₂ concentration in ambient air. This paper evaluates these challenges by testing a Toyota PHV on the industry standard CVS system combined with additional continuous sampling methodology for continuous diluents, smooth approach orifice (SAO) measurement for ambient air flow, and fuel flow meter (FFM) measurement for fuel consumption. The current EPA DF can produce an error resulting in higher mass calculation.
Technical Paper

Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends

2014-10-13
2014-01-2768
The relationship between ethanol and iso-butanol fuel concentrations and vehicle particulate matter emissions was investigated. This study utilized a gasoline direct injection (GDI) flexible fuel vehicle (FFV) with wall-guided fueling system tested with four fuels, including E10, E51, E83, and an iso-butanol blend at a proportion of 55% by volume. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer with an emphasis on the physical and chemical characterization of particulate matter (PM) emissions. The results indicated that the addition of higher ethanol blends and the iso-butanol blend resulted in large reductions in PM mass, soot, and total and solid particle number emissions. PM emissions for the baseline E10 fuel were characterized by a higher fraction of elemental carbon (EC), whereas the PM emissions for the higher ethanol blends were more organic carbon (OC) in nature.
Technical Paper

Engineering Requirements that Address Real World Hazards from Using High-Definition Maps, GNSS, and Weather Sensors in Autonomous Vehicles

2024-04-09
2024-01-2044
Evaluating real-world hazards associated with perception subsystems is critical in enhancing the performance of autonomous vehicles. The reliability of autonomous vehicles perception subsystems are paramount for safe and efficient operation. While current studies employ different metrics to evaluate perception subsystem failures in autonomous vehicles, there still exists a gap in the development and emphasis on engineering requirements. To address this gap, this study proposes the establishment of engineering requirements that specifically target real-world hazards and resilience factors important to AV operation, using High-Definition Maps, Global Navigation Satellite System, and weather sensors. The findings include the need for engineering requirements to establish clear criteria for a high-definition maps functionality in the presence of erroneous perception subsystem inputs which enhances the overall safety and reliability of the autonomous vehicles.
Technical Paper

Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation

2020-04-14
2020-01-0582
This paper presents an energy-optimal deceleration planning system (EDPS) to maximize regenerative energy for electrified vehicles on deceleration events perceived by map and navigation information, machine vision and connected communication. The optimization range for EDPS is restricted within an upcoming deceleration event rather than the entire routes while in real time considering preceding vehicles. A practical force balance relationship based on an electrified powertrain is explicitly utilized for building a cost function of the associated optimal control problem. The optimal inputs are parameterized on each computation node from a set of available deceleration profiles resulting from a deceleration time model which are configured by real-world test drivings.
X