Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Technical Paper

Visualization of the Gas Flow Field within a Diesel Particulate Filter Using Magnetic Resonance Imaging

2015-09-01
2015-01-2009
In recent years magnetic resonance imaging (MRI) has been shown to be an attractive method for fluid flow visualization. In this work, we show how MRI velocimetry techniques can be used to non-invasively investigate and visualize the hydrodynamics of exhaust gas in a diesel particulate filter (DPF), both when clean and after loading with diesel engine exhaust particulate matter. The measurements have been used to directly measure the gas flow in the inlet and outlet channels of the DPF, both axial profiles along the length and profiles across the channel diameter. Further, from this information we show that it is possible to indirectly ascertain the superficial wall-flow gas velocity and the soot loading profiles along the filter channel length.
Journal Article

Use of a Catalytic Stripper as an Alternative to the Original PMP Measurement Protocol

2013-04-08
2013-01-1563
The Particle Measurement Programme (PMP) developed an exhaust particle number measurement protocol that has been adopted by current light duty vehicle emission regulations in Europe. This includes thermal treatment of the exhaust aerosol to isolate solid particles only and a number counting device with a lower cutpoint of 23 nm to avoid measurement of smaller particles that may affect the repeatability of the measurement. In this paper, we examine a potential alternative to the PMP system, where the thermal treatment is replaced by a catalytic stripper (CS). This offers oxidation and not just evaporation of the volatile components. Alternative sampling systems, either fulfilling the PMP recommendations or utilizing a CS, have been explored in terms of their volatile particle removal efficiency. Tests have been conducted on diesel exhaust, diesel equipped with DPF and gasoline direct injection emissions.
Technical Paper

The 2-Step VCR Conrod System - Modular System for High Efficiency and Reduced CO2

2017-03-28
2017-01-0634
In order to achieve future CO2 targets - in particular under real driving conditions - different powertrain technologies will have to be introduced. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the internal combustion engine. In addition to further optimization of the combustion processes and the reduction of mechanical losses in the thermal- and energetic systems, the introduction of Variable Compression Ratio (VCR) is probably the measure with the highest potential for fuel economy improvement. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The basic principle of the AVL VCR system described in this paper is a 2-stage variation of the conrod length and thus the Compression Ratio (CR).
Technical Paper

Technologies to Achieve Future Emission Legislations with Two Stroke Motorcycles

2018-10-30
2018-32-0042
Increasingly stringent emission regulations force manufacturers of two wheelers to develop low emission motorcycle concepts. Especially for small two-stroke engines with symmetrical port timing structure, causing high HC-emissions due to scavenge losses, this is a challenging demand that can only be met with alternative mixture formation strategies and by intensifying the use of modern development tools. Changing from EU4 to EU5, emission legislation will not only have an impact on the improvement of internal combustion but will also drastically change the after-treatment system. Nowadays, small two-stroke engines make use of a simple carburetor for external mixture preparation. The cylinders are scavenged by air/fuel mixtures. Equipped with exhaust gas after-treatment systems, such as secondary air with two or three catalytic converters, the emission limits for EURO 4 homologation can be achieved with carbureted engines.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Study of Steady State and Transient EGR Behaviour of a Medium Duty Diesel Engine

2008-10-06
2008-01-2438
It is well known that accurate EGR control is paramount to controlling engine out emissions during steady state and transient operation of a diesel engine. The direct measurement of EGR is however non-trivial and especially difficult in engines with no external EGR control where the intake manifold CO2 levels can be measured more readily. This work studies the EGR behaviour in a medium duty diesel engine with a passive EGR rebreathing strategy for steady state and transient operation. High speed (response time ∼1ms) in-cylinder sampling using modified GDI valves is coupled with high frequency response analysers to measure the cyclic in-cylinder CO2, from which the EGR rate is deduced. It was found that controlling the EGR using the passive rebreathing strategy during certain combined speed and load transients is challenging, causing high smoke and NO emissions.
Technical Paper

Study of Possible Range Extender Concepts with Respect to Future Emission Limits

2010-09-28
2010-32-0129
The future exhaust emission legislation limits and the procedures for running the test cycles will have an important influence on future range extender concepts. Due to the special steady state operation strategy of the range extender engines, it is possible to create a simple methodology for comparing engine test bench emissions with the emission limits of exhaust gas legislations. Therefore the energy demand of a predefined vehicle was simulated with PHEM, a longitudinal dynamic simulation tool. According to that, the influence of different exhaust gas after treatment systems and preheating options on the tolerated raw emission concentration will be analyzed. With this information, a few chosen range extender engine concepts will be compared concerning their suitability for future exhaust emission legislations. The selection of the range extender concepts was carried out with the methotology of a value benefit analysis.
Technical Paper

Study of Cycle-By-Cycle Air-to-Fuel Ratio Determined from the Exhaust Gas Composition and a Novel Fast Response Device Based on a Wide Band Lambda Sensor

2008-10-06
2008-01-2439
This paper describes cyclic Air/Fuel ratio (AFR) measurements carried out with a novel device (fUEGO) based on a production Universal Exhaust Gas Oxygen sensor, but modified to give an improved frequency response. The results are compared to AFR calculated from a fast CO/CO2 analyser and a fast response flame ionization detector (FID). The direct comparison of the two different methods for determining the cyclic AFR reveals that the electrochemical device is in reasonable agreement with the more complex carbon balance method and can provide reliable cyclic AFR measurements with a reduced requirement for equipment and data post processing. The fUEGO however is sensitive to elevated levels of uHC's (unburned hydrocarbons) during misfires or partial burns and readings during such situations usually show deviations compared to the carbon balance method.
Technical Paper

Size distribution of particulate matter~Results from roadside measurements

2001-09-23
2001-24-0078
Measurements of ultrafine particles (diameter < 300 nm) and total suspended particulates (TSP) were performed in 2 tunnels (Lundby, Gothenborg, S, and Plabutsch, Graz, A). The measurements in the Lundby tunnel were performed directly in the tunnel tube at the roadside whereas the measurements at the Plabutsch tunnel took place at the top of a 90 m high ventilation shaft. There was good correlation for all diameters (7.91 nm - 300 nm) between ultrafine particles and TSP for the measurements at the Lundby tunnel. At the Plabutsch site a correlation between ultrafine particles and TSP was detected only for particles > 35 nm. The maximum of the particle size distribution function for Lundby was at 30 nm and for the Plabutsch tunnel at 80 nm.
Technical Paper

Real Time Capable Pollutant Formation and Exhaust Aftertreatment Modeling-HSDI Diesel Engine Simulation

2011-04-12
2011-01-1438
Modern Diesel engines require an integrated development of combustion strategies, air management and exhaust aftertreatment. This study presents a comprehensive simulation approach with the aim to support engine development activities in the virtual environment. A real-time capable engine, vehicle and control model is extended by three key features. First, a pollutant production model is embedded in a two-zone cylinder model. Second, a framework for catalytic pollutant conversion is built focusing on modern diesel exhaust aftertreatment systems. Third, an extended species transport model is introduced considering the transport of pollutants through the air path. The entire plant model is validated on the example of a passenger car Diesel engine. The predicted engine behavior is compared with steady-state measurements. The NO formation model is investigated for a series of steady-state and transient operating conditions.
Technical Paper

Premixed Turbulent Combustion Flowfield Measurements Using PIV and LST and Their Application to Flamelet Modelling of Engine Combustion

1992-10-01
922322
Flamelet modelling of premixed turbulent combustion can be applied to spark-ignition engine combustion. To address and validate several modelling criteria, two measurement techniques are used in a burner flame to study the interaction between turbulent flowfields and combustion for subsequent application to engine combustion. Particle Image Velocimetry and Light Sheet Tomography are used together to measure conditional velocities simultaneously in reactant and product mixtures. Correlations of velocity and reaction scalar fluctuations indicate that counter-gradient turbulent diffusion must be accounted for when modelling this flowfield. Comparisons of spatial averaging of instantaneous and ensemble-averaged data are made and the application of similar techniques to engine combustion is discussed.
Technical Paper

Powertrain Calibration Techniques

2019-09-09
2019-24-0196
Meeting the particle number (PN) emissions limits in vehicle test sequences needs specific attention on each power variation event occurring in the internal combustion engine (ICE). ICE power variations arise from engine start onwards along the entire test drive. In hybrid systems, there is one further source for transient ICE response: each power shift between E-motor and ICE introduces gas flow variations with subsequent temperature response in the ICE and in the engine aftertreatment system (EAS). This bears consequences for engine out emissions as well as for the EAS efficiency and even for the durability of a catalytic converter. As system calibration engineers must decide on numerous actuator parameters, their decisions, finally, are crucial for meeting legislative limits under the boundary conditions given by the hybrid vehicle’s drive environment.
Technical Paper

Potential of E85 Direct Injection for Passenger Car Application

2010-10-25
2010-01-2086
This paper presents an analysis of the potential of E85 (a mixture of 85 % (bio)ethanol and 15 % gasoline) as a fuel for spark-ignition (SI) direct-injection internal combustion engines. This involves investigation of not only application to downsizing concepts with high specific power but also behavior relating to emissions and efficiency at both part and full load. Measurements while running on gasoline were used for comparison purposes. The first stage involved analysis using 1D simulation of two different downsizing concepts with regard to turbocharging potential and performance. Following this, various influential parameters such as injector position, injection pressure, compression ratio, degree of turbocharging etc. were investigated on a single cylinder research engine. In the case of high pressure direct injection, particulate emissions also play an important role, so particulate count and particulate size distribution were also studied in detail.
Technical Paper

Potential for Particulate Reduction by Use of eFuels in MPFI Engines

2023-10-24
2023-01-1848
Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [1]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [2, 3, 4]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives.
Journal Article

Particulate Matter Classification in Filtration and Regeneration-Plant Modeling for SiL and HiL Environment

2017-03-28
2017-01-0970
The present work describes an existing transient, non-isothermal 1D+1D particulate filter model to capture the impact of different types of particulate matter (PM) on filtration and regeneration. PM classes of arbitrary characteristics (size, composition etc.) are transported and filtered following standard mechanisms. PM deposit populations of arbitrary composition and contact states are used to describe regeneration on a micro-kinetical level. The transport class and deposit population are linked by introducing a splitting deposit matrix. Filtration and regeneration modes are compared to experimental data from literature and a brief numerical assessment on the filtration model is performed. The filter model as part of an exhaust line is used in a concept study on different coating variants. The same exhaust line model is connected to an engine thermodynamic and vehicle model. This system model is run through a random drive cycle in office simulation.
Technical Paper

Novel Methods for Characterizing the Mechanical Durability of Automobile Paint Systems

1998-02-23
980977
This paper presents two new methods to quantitatively evaluate the mechanical durability of multi-layered automotive paint systems. The first examines the resistance of the paint system to particle impacts and involves the impact of hard particles against the painted surface, under controlled conditions. The second test examines the resistance of the clearcoat layer in the paint system to surface abrasion, or mar. The test uses a steel sphere which is rotated against the paint surface in the presence of a slurry of fine abrasive particles. These two techniques have been successfully applied to a set of commercial automobile paints, and were found to discriminate well between them and give reproducible, quantitative data. The effects of the bake conditions on both the erosion and abrasion resistance of a full paint system and the abrasion resistance of a range of commercial clearcoats are examined in detail.
Technical Paper

Multi-Objective Optimization of a Kinetics-Based HCCI Model Using Engine Data

2011-08-30
2011-01-1783
A multi-objective optimization scheme based on stochastic global search is developed and used to examine the performance of an HCCI model containing a reduced chemical kinetic mechanism, and to study interrelations among different model responses. A stochastic reactor model of an HCCI engine is used in this study, and dedicated HCCI engine experiments are performed to provide reference for the optimization. The results revealed conflicting trends among objectives normally used in mechanism optimization, such as ignition delay and engine cylinder pressure history, indicating that a single best combination of optimization variables for these objectives did not exist. This implies that optimizing chemical mechanisms to maintain universal predictivity across such conflicting responses will only yield a predictivity tradeoff. It also implies that careful selection of optimization objectives increases the likelihood of better predictivity for these objectives.
Journal Article

Modeling of Catalyzed Particulate Filters - Concept Phase Simulation and Real-Time Plant Modeling on HiL

2016-04-05
2016-01-0969
The present work introduces an extended particulate filter model focusing on capabilities to cover catalytic and surface storage reactions and to serve as a virtual multi-functional reactor/separator. The model can be classified as a transient, non-isothermal 1D+1D two-channel model. The applied modeling framework offers the required modeling depth to investigate arbitrary catalytic reaction schemes and it follows the computational requirement of running in real-time. The trade-off between model complexity and computational speed is scalable. The model is validated with the help of an analytically solved reference and the model parametrization is demonstrated by simulating experimentally given temperatures of a heat-up measurement. The detailed 1D+1D model is demonstrated in a concept study comparing the impact of different spatial washcoat distributions.
X