Refine Your Search

Topic

Author

Search Results

Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Journal Article

Weapon Combat Effectiveness Analytics Using Big Data and Simulations: A Literature Review

2019-03-19
2019-01-1365
The Weapon Combat Effectiveness (WCE) analytics is very expensive, time-consuming, and dangerous in the real world because we have to create data from the real operations with a lot of people and weapons in the actual environment. The Modeling and Simulation (M&S) of many techniques are used for overcoming these limitations. Although the era of big data has emerged and achieved a great deal of success in a variety of fields, most of WCE research using the Defense Modeling and Simulation (DM&S) techniques studied have considered a lot of assumptions and limited scenarios without the help of big data technologies. Furthermore, WCE analytics using previous methodologies cannot help but get the bias results. This paper reviews and combines the basic knowledge for the new WCE analytics methodology using big data and M&S to overcome these problems of bias. Then this paper reviews the general overview of WCE, DM&S, and big data.
Journal Article

Utilizing Team Productivity Models in the Selection of Space Exploration Teams

2013-09-17
2013-01-2082
The term “productivity” all too often has becomes a buzz-word, ultimately diminishing its perceived importance. However, productivity is the major concern of any team, and therefore must be defined to gain an appropriate understanding of how a system is actually working. Here, productivity means the level of contribution to the throughput of a system such as defined in the Theory of Constraints. In the field of space exploration, the throughput is the number of milestones of the mission accomplished as well as the potential survival during extreme events (due to failures or other unplanned events). For a time tasks were accomplished by expert individuals (e.g., an astronaut), but recently team structures have become the norm. It is clear that with increased mission complexity, “no single entity can have complete knowledge of or the abilities to handle all matters” [10].
Journal Article

Utilizing Discrete Event Simulation for Schedule Analysis: Processes and Lessons Learned from NASA's GOPD Integrated Timeline Model

2015-09-15
2015-01-2397
In planning, simulation models create microcosms, small universes that operate based on assumed principles. While this can be powerful, the information it can provide is limited by the assumptions made and the designed operation of the model. When performing schedule planning and analysis, modelers are often provided with timelines representing project tasks, their relationships, and estimates related to durations, resource requirements, etc. These timelines can be created with programs such as Microsoft Excel or Microsoft Project. There are several important attributes these timelines have; they represent a nominal flow (meaning they do not represent stochastic processes), and they are not necessarily governed by dates or subjected to a calendar. Attributes such as these become important in project planning since timelines often serve as the basis for creating schedules.
Technical Paper

Thermal Design in Diode Array Packaging

2002-10-29
2002-01-3261
Effective thermal management and removal of the waste heat generated at diode arrays is critical to the development of high-power solid-state lasers. Thermal design must be considered in the packaging of these arrays. Two different packages with heat dissipation through spray cooling are evaluated experimentally and numerically. Their overall performance is compared with other packaging configurations using different heat removal approaches. A novel packaging design is proposed that can fulfill the requirements of low thermal resistance, temperature uniformity among emitters in the diode array, low coolant flow rate, simplicity and low assembly cost. The effect of temperature uniformity on the pumping efficiency for gain media is examined for our novel packaging design. The thermal stress induced by temperature variation within an emitter is also considered.
Journal Article

The Semantic Web and Space Operations

2011-10-18
2011-01-2506
In this paper, we introduce the use of ontologies to implement the information developed and organized by resource planning tools into standard project management documents covering integrated cost, resource modeling and analysis, and visualization. The basic upper ontology used for NASA Space Operations is explained and the results obtained are discussed. This ontology-centered approach is looking for tighter connections between software, hardware, and systems engineering.
Technical Paper

The Distributed Simulation of Intelligent Terrain Exploration

2018-10-30
2018-01-1915
In this study we consider the coordinated exploration of an unfamiliar Martian landscape by a swarm of small autonomous rovers, called Swarmies, simulated in a distributed setting. With a sustainable program of return missions to and from Mars in mind, the goal of said exploration is to efficiently prospect the terrain for water meant to be gathered and then utilized in the production of rocket fuel. The rovers are tasked with relaying relevant data to a home base that is responsible for maintaining a mining schedule for an arbitrarily large group of rovers extracting water-rich regolith. For this reason, it is crucial that the participants maintain a wireless connection with one another and with the base throughout the entire process. We describe the architecture of our simulation which is composed of HLA-compliant components that are visualized via the Distributed Observer Network tool developed by NASA.
Journal Article

Simulation and Systems Engineering: Lessons Learned

2019-03-19
2019-01-1331
Aerospace projects live a long time. Around the turn of the century, NASA first began to discuss multi-decadal projects with respect to the tools, methods, infrastructure and culture necessary to successfully establish outposts and bases both on the Moon as well as in adjacent space. Pilot projects were completed, capabilities developed and solutions were shared across the Agency. A decade later the Mars discussion was multi-generational with planning milestones 50 years in the future. The 1970’s Requirements Document, or the 1990’s System Model are nowhere near suitable for planning, development, integration and operations of multi-national, highly complex, incredibly expensive development efforts planned to outlast not only the careers of the developers but that of their children as well. Simulation in the different forms has become very important for this multi-decadal projects. The challenge will be to device ways to create formats and views which can stand time.
Technical Paper

Simulation Optimization of the NASA Mars Fuel In-Situ Resource Utilization and Its Infrastructure

2018-10-30
2018-01-1963
The National Aeronautics and Space Administration’s (NASA) current objectives include expanding space exploration and planning a manned expedition to Mars. In order to meet the latter objective, it is imperative that humans generate their own products by harnessing space resources, a process referred to as In-Situ Resource Utilization (ISRU). ISRU will enable NASA to reduce both payload mass and mission cost by reducing the number of consumables required to be launched from Earth. The discrete-event simulation discussed focuses primarily on one ISRU system, the production of fuel for a return trip to Earth by utilizing Mar’s atmosphere and regolith. This ISRU system primarily uses autonomous rovers for exploration, excavation, processing of Mar’s regolith to produce fuel, and disposal of the processed regolith. This study explores individual rover and component requirements including rover speeds, travel distances, functional periods, charging, and maintenance times.
Technical Paper

Performance Characteristics of MOSFETs Operating at High Power

2000-10-31
2000-01-3622
This paper demonstrates that the on-resistance of a power MOSFET decreases significantly when the operating temperature decreases. The decrease in on-resistance under cryogenic temperature allows the device to operate at a much higher power and current condition. Also, it is demonstrated that the MOSFET device can be effectively kept at cryogenic temperature by spray cooling with liquid nitrogen. Over 80 W of heat generated can be removed continuously with spray cooling.
Technical Paper

Nonlinear Neural Network Modeling of Aircraft Synchronous Generator with High Power Density

2012-10-22
2012-01-2158
Preliminary investigations of nonlinear modeling of aircraft synchronous generators using neural networks are presented. Aircraft synchronous generators with high power density tend operate at current-levels proportional to the magnetic saturation region of the machine's material. The nonlinear model accounts for magnetic saturation of the generator, which causes the winding flux linkages and inductances to vary as a function of current. Finite element method software is used to perform a parametric sweep of direct, quadrature, and field currents to extract the respective flux linkages. This data is used to train a neural network which yields current as a function of flux linkage. The neural network is implemented in a Simulink synchronous generator model and simulation results are compared with a previously developed linear model. Results show that the nonlinear neural network model can more accurately describe the responsiveness and performance of the synchronous generator.
Technical Paper

Nonlinear Electrical Simulation of High-Power Synchronous Generator System

2006-11-07
2006-01-3041
An innovative nonlinear simulation approach for high power density synchronous generator systems is developed and implemented. Due to high power density, the generator operates in nonlinear region of the magnetic circuit. Magnetic Finite Element Analysis (FEA) makes nonlinear simulation possible. Neural network technique provides nonlinear functions for system level simulation. Dynamic voltage equation provides excellent mathematical model for system level simulations. Voltage, current, and flux linkage quantities are applied in Direct-Quadrature (DQ) rotating frame. The simulated system includes main machine, exciter, rectifier bridge, bang-bang control, and PI control circuitry, forming a closed loop system. Each part is modeled and then integrated into the system model.
Journal Article

Modeling Space Operations Systems Using SysML as to Enable Anomaly Detection

2015-09-15
2015-01-2388
Although a multitude of anomaly detection and fault isolation programs can be found in the research, there does not appear to be any work published on architectural templates that could take advantage of multiple programs and integrate them into the desired systems. More specifically, there is an absence of a methodological process for generating anomaly detection and fault isolation designs to either embed within new system concepts, or supplement existing schemes. This paper introduces a new approach based on systems engineering and the System Modeling Language (SysML). Preliminary concepts of the proposed approach are explained. In addition, a case study is also mentioned.
Journal Article

Heat Transfer Performance of a Dual Latent Heat Sink for Pulsed Heat Loads

2008-11-11
2008-01-2928
This paper presents the concept of a dual latent heat sink for thermal management of pulse heat generating electronic systems. The focus of this work is to verify the effectiveness of the concept during charging through experimentation. Accordingly, custom components were built and a prototype version of the heat sink was fabricated. Experiments were performed to investigate the implementation feasibility and heat transfer performance. It is shown that this heat sink is practicable and helps in arresting the system temperature rise during charging (period of pulse heat load).
Technical Paper

Habitat Design Considerations for Mitigating Social Stressors in Long-Duration Spaceflight

2004-07-19
2004-01-2585
Social stressors in long-duration spaceflight (LDSF) have serious implications for crew effectiveness and mission safety. This paper reviews potential stressors and presents habitat and organizational design considerations to reduce perceived demand from social stressors in four areas: privacy and personal space, isolation, interpersonal interactions, and cultural differences. Results can serve as guidelines for the design of future LDSF missions and spacecraft, and will benefit attempts to develop an accurate model of stress in the spaceflight domain.
Journal Article

Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts

2011-10-18
2011-01-2643
This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV - April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.
Technical Paper

Fan Performance Characteristics at Various Rotational Speeds and Ambient Pressures

2014-09-16
2014-01-2219
The scaling laws of fans express basic relationships among the variables of fan static pressure head, volume flow rate, air density, rotational speed, fan diameter, and power. These relationships make it possible to compare the performance of geometrically similar fans in dissimilar conditions. The fan laws were derived from dimensionless analysis of the equations for volumetric flow rate, static pressure head, and power as a function of fan diameter, air density and rotational speed. The purpose of this study is to characterize a fan's performance characteristics at various rotational speeds and ambient pressures. The experimental results are compared to the fan scaling laws.
Technical Paper

Enabling Much Higher Power Densities in Aerospace Power Electronics with High Temperature Evaporative Spray Cooling

2008-11-11
2008-01-2919
A power electronics module was equipped with an evaporative spray cooling nozzle assembly that served to remove waste heat from the silicon devices. The spray cooling nozzle assembly took the place of the standard heat sink, which uses single phase convection. The purpose of this work was to test the ability of spray cooling to enable higher power density in power electronics with high temperature coolant, and to be an effective and lightweight system level solution to the thermal management needs of aerospace vehicles. The spray cooling work done here was with 95 °C water, and this data is compared to 100 °C water/ propylene glycol spray cooling data from a previous paper so as to compare the spray cooling performance of a single component liquid to that of a binary liquid such as WPG. The module used during this work was a COTS module manufactured by Semikron, Inc., with a maximum DC power input of 180 kW (450 VDC and 400 A).
Technical Paper

Electromechanical Actuator Cooling Fan Reliability Analysis and Safety Improvement

2016-09-20
2016-01-1997
The aircraft electromechanical actuator (EMA) cooling fan is a critical component because an EMA failure caused by overheating could lead to a catastrophic failure in aircraft. Fault tree analysis (FTA) is used to access the failure probability of EMA fans with the goal of improving their mean time to failure (MTTF) from ∼O(5×104) to ∼ O(2.5×109) hours without incurring heavy weight penalty and high cost. The dual-winding and dual-bearing approaches are analyzed and a contra rotating dual-fan design is proposed. Fan motors are assumed to be brushless direct current (BLDC) motors. To have a full understanding of fan reliability, all possible failure mechanisms and failure modes are taken into account. After summarizing the possible failure causes and failure modes of BLDC fans by focusing on each failure mechanism, the life expectancy of fan ball bearings based on a major failure mechanism of lubricant deterioration is calculated and compared to that provided in the literature.
Technical Paper

Electromechanical Actuator Cooling Fan Blades Design and Optimization

2016-09-20
2016-01-1994
For aircraft electromechanical actuator (EMA) cooling applications using forced air produced by axial fans, the main objective in fan design is to generate high static pressure head, high volumetric flow rate, and high efficiency over a wide operating range of rotational speed (1x∼3x) and ambient pressure (0.2∼1 atm). In this paper, a fan design based on a fan diameter of 86 mm, fan depth (thickness) of 25.4 mm, and hub diameter of 48 mm is presented. The blade setting angle and the chord lengths at the leading and trailing edges are varied in their suitable ranges to determine the optimal blade profiles. The fan static pressure head, volumetric flow rate, and flow velocity are calculated at various ambient pressures and rotational speeds. The optimal blade design in terms of maximum total-to-total pressure ratio and efficiency at the design point is obtained via CFD simulation. A 5-blade configuration yields the best performance in terms of efficiency and total pressure ratio.
X