Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Thermal Design in Diode Array Packaging

2002-10-29
2002-01-3261
Effective thermal management and removal of the waste heat generated at diode arrays is critical to the development of high-power solid-state lasers. Thermal design must be considered in the packaging of these arrays. Two different packages with heat dissipation through spray cooling are evaluated experimentally and numerically. Their overall performance is compared with other packaging configurations using different heat removal approaches. A novel packaging design is proposed that can fulfill the requirements of low thermal resistance, temperature uniformity among emitters in the diode array, low coolant flow rate, simplicity and low assembly cost. The effect of temperature uniformity on the pumping efficiency for gain media is examined for our novel packaging design. The thermal stress induced by temperature variation within an emitter is also considered.
Technical Paper

Development of the Multi-Resolution Modeling Environment through Aircraft Scenarios

2018-10-30
2018-01-1923
Multi-Resolution Modeling (MRM) is one of the key technologies for building complex and large-scale simulations using legacy simulators. MRM has been developed continuously, especially in military fields. MRM plays a crucial role to describe the battlefield and gathering the desired information efficiently by linking various levels of resolution. The simulation models interact across different local and/or distance area networks using the High Level Architecture (HLA) regardless of their operating systems and hardware. The HLA is a standard architecture developed by the US Department of Defense (DoD) and is meant to create interoperability among different types of simulators. Therefore, MRM implementations are very dependent on Interoperability and Composability. This paper summarizes the definition of MRM-related terminology and proposes a basic form of MRM system using Commercial Off-The-Shelf (COTS) simulators and HLA.
Journal Article

An Architecture for Monitoring and Anomaly Detection for Space Systems

2013-09-17
2013-01-2090
Complex aerospace engineering systems require innovative methods for performance monitoring and anomaly detection. The interface of a real-time data stream to a system for analysis, pattern recognition, and anomaly detection can require distributed system architectures and sophisticated custom programming. This paper presents a case study of a simplified interface between Programmable Logic Controller (PLC) real-time data output, signal processing, cloud computing, and tablet systems. The discussed approach consists of three parts: First, the connectivity of real-time data from PLCs to the signal processing algorithms, using standard communication technologies. Second, the interface of legacy routines, such as NASA's Inductive Monitoring System (IMS), with a hybrid signal processing system. Third, the connectivity and interaction of the signal processing system with a wireless and distributed tablet, (iPhone/iPad) in a hybrid system configuration using cloud computing.
Technical Paper

A Model-Based Fault Diagnostic and Control System for Spacecraft Power

1992-08-03
929099
This paper describes a model-based approach to diagnosing electrical faults in electrical power systems. Until recently, model-based reasoning has only been applied to physical systems with static, persistent states, and with parts whose behavior can be expressed combinatorially, such as digital circuits. Our research is one of a handful of recent efforts to apply model-based reasoning to more complex systems, those whose behavior is difficult or impossible to express combinatorially, and whose states change continuously over time. The chosen approach to representation is loosely based on the idea of the equation network proposed in [6]. This requires a more complex component and behavior model than for simpler physical devices. The resulting system is being tested on fault data from the SSM/PMAD power system breadboard being developed at NASA-MSFC [9].
Technical Paper

A Heat Pipe Assisted Air-Cooled Rotary Wankel Engine for Improved Durability, Power and Efficiency

2014-09-16
2014-01-2160
In this paper, we address the thermal management issues which limit the lifespan, specific power and overall efficiency of an air-cooled rotary Wankel engine used in Unmanned Air Vehicles (UAVs). Our goal is to eliminate the hot spots and reduce the temperature gradients in the engine housing and side plates by aggressive heat spreading using heat pipes. We demonstrate by simulation that, for a specific power requirement, with heat spreading and more effective heat dissipation, thermal stress and distortion can be significantly reduced, even with air cooling. The maximum temperature drop was substantial, from 231°C to 129°C. The temperature difference (measure of temperature uniformity) decreased by 8.8 times (from 159°C to 18°C) for a typical UAV engine. Our heat spreaders would not change the frontal area of the engine and should have a negligible impact on the installed weight of the propulsion assembly.
Technical Paper

A Distributed Simulation of a Martian Fuel Production Facility

2017-09-19
2017-01-2022
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
X