Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Two-Dimensional Measurements of the Fuel Vapor Concentration in the Combustion Chamber of a SI Engine with Laser Rayleigh Scattering

1992-10-01
922389
An experimental study was made of the two-dimensional distributions of the fuel vapor concentration simulated by Freon-12 in the combustion chamber of a SI engine. Laser Rayleigh scattering was applied for this remote, nonintrusive and highly space- and time-resolved measurement. The original engine was modified to introduce YAG laser-induced sheet light into the combustion chamber and the scattered light was captured by a CCD camera fitted with a gated double-microchannel plate image intensifier. The results showed that the fuel vapor concentration was highly heterogeneous during the intake stroke and the inhomogeneity decreased in the compression stroke. But, even at the end of the compression stroke, a number of small lumps of inhomogeneous mixture still existed randomly in the engine combustion chamber, which is assumed to cause the heterogeneity of the mixture strength field at the spark discharge.
Technical Paper

Quantitative Imaging of the Fuel Concentration in a SI Engine with Laser Rayleigh Scattering

1993-10-01
932641
Quantitative imaging of the fuel concentration distribution was made in the combustion chamber of a propane-fueled spark ignition (SI) engine with the employment of laser-sheet-induced Rayleigh scattering technique for realizing the remote, nonintrusive and highly space- and time-resolved measurement. The original engine was modified to introduce YAG laser-induced sheet light into the combustion chamber and the scattered light was captured by a CCD camera fitted with a gated double-micro- channel plate image intensifier. The measurements were done at the crank angle of 270°ATDC in the combustion chamber of the engine motored at 200rpm with an air fuel ratio of 13 for various injection timing, injection direction and intake flow. The results show that with an appropriate matching of fuel injection timing, injection direction and intake flow, a stratified distribution of the fuel concentration can be realized.
Technical Paper

PLIF Measurements of the Cyclic Variation of Mixture Concentration in a SI Engine

1994-03-01
940988
Planar laser-induced fluorescence (PLIF) technique was employed to perform the quantitative measurements of the cyclic variation of mixture concentration in the combustion chamber of a spark ignition (SI) engine. Nitrogen dioxide was used as the fluorescence tracer to simulate the fuel vapor. A Nd:YAG laser operated at its second harmonic wavelength was employed as the light source. The original engine was modified to introduce laser sheet light into the combustion chamber and the induced fluorescence was captured by a CCD camera fitted with a gated image intensifier. The measurements were done at the engine crank angles of 180° ∼ 300° ATDC with the engine speeds of 200 ∼ 400 rpm and the injection timings of -70 °, 50° and 100° ATDC. A theoretical analysis was made to describe the cyclically varying characteristics of the mixture concentration.
X