Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Hole Geometrical Effect on Internal Flow, Fuel Atomization and Spray Evaporation of Multi-Hole Nozzle for Diesel Engine

2017-03-28
2017-01-0860
With the aim of improving engine performance, recent trend of fuel injection nozzle design followed by engineers and researchers is focusing on more efficient fuel break up, atomization, and fuel evaporation. Therefore, it is crucial to characterize the effect of nozzle geometric design on fuel internal flow dynamics and the consequent fuel-air mixture properties. In this study, the internal flow and spray characteristics generated by the practical multi-hole (10 holes) nozzles with different nozzle hole length and hole diameter were investigated in conjunction with a series of computational and experimental methods. Specifically, the Computational Fluid Dynamics (CFD) commercial code was used to predict the internal flow variation inside different nozzle configurations, and the high-speed video observation method was applied to visualize the spray evolution processes under non-evaporating conditions.
Technical Paper

Effects of Hole Diameter and Injection Pressure on Fuel Spray and Its Evaporation Characteristics of Multi-Hole Nozzle for Diesel Engine

2017-10-08
2017-01-2305
The performance of a diesel engine largely depends on the spray behavior and mixture formation. Nozzle configurations and operating conditions are important factors that influence spray development. Using numerical and experimental methods, this study focused on the spray development of multi-hole nozzles under non-evaporating and evaporating conditions to compare the influence of nozzle hole diameter and injection pressure on spray characteristics. High-speed video observation was employed to study the properties of spray development under the non-evaporating condition, while the Laser Absorption Scattering technique was used in the observation and quantitative analysis of evaporating spray characteristics in the evaporating condition. In addition, computational fluid dynamics study results published previously [1] were correlated with the current experimental results to provide more detailed explanations about the mechanism of the characteristics of spray behavior.
Journal Article

Characterization of Internal Flow and Spray Behaviors of Hole-Type Nozzle under Tiny and Normal Injection Quantity Conditions for Diesel Engine

2016-04-05
2016-01-0862
The tiny and normal injection quantity instances usually happen under the multi-injection strategy condition to restrain the uncontrollability of the ignition timing of the homogeneous charge compression ignition (HCCI) combustion concept. Meanwhile, instead of the traditional and fundamental single-hole diesel injector, the axisymmetric multi-hole injectors are usually applied to couple with the combustion chamber under most practical operating conditions. In the current paper, the internal flow and spray characteristics generated by single-hole and multi-hole (10 holes) nozzles under normal (2 mm3/hole) and tiny (0.3 mm3/hole) injection quantity conditions were investigated in conjunction with a series of experimental and computational methods. High-speed video observation was conducted at 10000 and 100000 fps under the condition of 120 MPa rail pressure, 1.5 MPa ambient pressure, room temperature, and nitrogen environment to visualize different spray properties.
Technical Paper

Characteristics of Nozzle Internal Flow and Near-Field Spray of Multi-Hole Injectors for Diesel Engines

2015-09-01
2015-01-1920
The combustion process, emission formation and the resulting engine performance in a diesel engine are well known to be governed mainly by spray behaviors and the consequent mixture formation quality. One of the most important factors that affect the spray development is the nozzle configuration. Originally, single-hole diesel injector is usually applied in fundamental research to provide insights into the spray characteristics. However, the spray emerging from a realistic multi-hole injector approaches the practical engine operation situation better. Meanwhile, previous research has shown that the reduced nozzle hole diameter is effective for preparing more uniform mixture. In the current paper, a study about the effects of nozzle configuration and hole diameter on the internal flow and spray properties was conducted in conjunction with a series of experimental and computational methods.
Technical Paper

Characteristics of Diesel Spray Flame under Flat Wall Impinging Condition --LAS, OH* Chemiluminescence and Two Color Pyrometry Results

2014-10-13
2014-01-2636
The effect of spray/wall interaction on diesel spray flame characteristics was investigated by applying LAS (Laser Absorption-Scattering) technique, OH* chemiluminescence and two color pyrometry in a constant volume vessel. To insure the precision of this investigation, following necessary verification experiments were carried out: (1) OH* chemiluminescence and two color pyrometry were synchronously employed to analyze the influence of soot incandescence on OH* chemiluminescence signal intensity; and (2) frontal view and side view OH* images of a linearly arranged three holes injector were concentrated on to investigate the effect of soot on optical intensity attenuation under line-of-sight image recording condition. And then the effect of impinging distance (30,40,50,60 mm and free) on diesel spray and combustion behaviors were studied. The results reveal that the impinging distance plays a significant role in mixture formation.
X