Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines

1976-02-01
760129
A mathematical model was developed for predicting the concentration of exhaust nitric oxide, soot and other emissions in a direct injection diesel engine. In the model, it was emphasized to describe the phenomena occurring in the combustion chamber from the microscopic point of view. The prediction was based on the knowledges concerning a single droplet as well as the droplet size distribution in a fuel spray and the spatial and temporal distribution histories of fuel in a combustion chamber. The heterogeneous field of temperature and equivalence ratio, and uniform pressure in the cylinder were postulated. The heat release model gives the burning rate of injected fuel and pressure and temperature history in the cylinder. The concentration of nitric oxide and soot in the cylinder was predicted by the emission formation model.
Technical Paper

Fuel Droplet Size Distribution in Diesel Combustion Chamber

1974-02-01
740715
In order to determine spray droplet size in a diesel engine, fuel was injected into high-pressure, room-temperature gaseous environments with a diesel engine injection system. Droplet size was measured using the liquid immersion sampling technique with a mixture of water-methylcellulose solution and ethanol used as an immersion liquid for diesel fuel oil. The volume distribution of diesel spray droplets is well correlated with chi square distribution with freedom, ϕ = 8, in the range of this investigation. The Sauter mean diameter increased with increasing back pressure, with the amount of fuel in a spray, and with decrease in pump speed. An empirical correlation was developed between effective injection pressure, air density, the quantity of the fuel delivery, and the Sauter mean diameter of spray droplets.
X