Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Spray and Flame Behaviors of Ethanol-Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2015-09-01
2015-01-1950
Different ethanol-gasoline blended fuels, namely the E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle in a condition simulating the near top dead center (TDC). Two typical injection pressures of 10 and 20MPa were adopted to clarify the spray and flame behaviors. The correlation of the upstream unburned fuel and the flame propagation was analyzed by the high-speed imaging of shadowgraph. Moreover, the effects of ignition timing and location on the flame propagation were discussed based on the imaging of OH* chemiluminescence.
Technical Paper

Internal Fuel Flow, Near-Field and Far-Field Spray Evolution, and Mixture Formation Characteristics of Diesel Injectors - A Comparison between Multi- and Single-Hole Injectors

2019-04-02
2019-01-0273
A comparison of spray characteristics was conducted between single- and multi-hole injectors. A commercial software (AVL FIRE) was used to investigate the internal flow inside the sac volume, as well as the initial spray behavior at 1 mm downstream of the nozzle exit. Microscopic imaging was applied to observe the spray dispersion angle (spray cone angle) at the vicinity of the nozzle. Laser absorption scattering (LAS) technique was implemented for measuring the mixture concentration. Three injection quantities, namely 0.5, 2.5, and 5.0 mg/hole, were selected to observe the differences between transient and quasi-steady spray. The vapor penetration at the initial stage of the injection was greater for single-hole than that of multi-hole injector due to faster fuel pressure build-up process inside the sac volume.
Technical Paper

Effects of ratio and dwell of split injection on fuel spray and mixture formation process under evaporating, non-reacting condition

2019-12-19
2019-01-2323
The effects of split injections of a diesel spray was evaluated in a constant volume chamber under evaporating, non-reacting condition. Laser absorption scattering (LAS) technique was utilized for the mixture concentration measurement, using a diesel surrogate fuel consists of n-tridecane and 2.5% of 1-methylnaphthalene in volume basis. While fixing the total injected fuel mass of 5.0 mg/hole, the effects of split ratio in mass basis and the dwell time (or injection interval) were investigated. Among the split ratios conducted in the current study (3,7, 5:5 and 7:3), the split ratio of 7:3 was the optimum for lean mixture formation regarding the overall distribution of the equivalence ratio at end-of-injection (EOI) timing. The air entrainment wave at the EOI timing of the first injection allowed the fuel at the vicinity of the nozzle to become leaner at a faster rate.
Technical Paper

Effects of positive or negative dwell times of split injection on diesel spray development and mixture formation processes

2020-01-24
2019-32-0596
An investigation on the effect of dwell time of split injection on a diesel spray evolution and mixture formation process was carried out. A commercial 7-hole injector were used in the experiment to eliminate the possible discrepancies on the spray with single-hole research injector. Laser absorption scattering (LAS) technique was implemented for the measurement of the temporal evolution of fuel evaporation and mixture concentration. The diesel surrogate fuel consists of n-tridecane and 2.5% of 1-methylnaphthalene in volume basis was used. The total amount of fuel injected was initially fixed to 5.0 mg/hole. A split ratio of 9: 1 in mass basis was selected according to the results obtained from a previous study. The dwell time was varied from 120 µs to a negative value of −50 µs. The effects of negative dwell time was not ideal for lean mixture formation when compared to zero or positive dwell time conditions.
Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Journal Article

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Diesel Engine-Like Condition: Effects of Injection Pressure, Nozzle Hole Diameter and Impingement Distance

2019-12-19
2019-01-2183
Substantial amount of fuel energy input is lost by heat transfer through combustion chamber walls in the internal combustion engines. Thus, these heat losses account for reduced thermal efficiency, in that spray-wall impingement plays a crucial role in Direct Injection diesel engines. The objective of this study is to investigate the mechanism of the heat transfer from the spray/flame to the impinging wall under small diesel engine-like condition and how the spray characteristics are affected with regards to effect of injection pressure, nozzle hole diameter and impingement distance. The experiment results showed that injection pressure was predominant factor on spray-wall heat transfer.
X