Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Spray and Flame Behaviors of Ethanol-Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

Different ethanol-gasoline blended fuels, namely the E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle in a condition simulating the near top dead center (TDC). Two typical injection pressures of 10 and 20MPa were adopted to clarify the spray and flame behaviors. The correlation of the upstream unburned fuel and the flame propagation was analyzed by the high-speed imaging of shadowgraph. Moreover, the effects of ignition timing and location on the flame propagation were discussed based on the imaging of OH* chemiluminescence.
Technical Paper

Internal Fuel Flow, Near-Field and Far-Field Spray Evolution, and Mixture Formation Characteristics of Diesel Injectors - A Comparison between Multi- and Single-Hole Injectors

A comparison of spray characteristics was conducted between single- and multi-hole injectors. A commercial software (AVL FIRE) was used to investigate the internal flow inside the sac volume, as well as the initial spray behavior at 1 mm downstream of the nozzle exit. Microscopic imaging was applied to observe the spray dispersion angle (spray cone angle) at the vicinity of the nozzle. Laser absorption scattering (LAS) technique was implemented for measuring the mixture concentration. Three injection quantities, namely 0.5, 2.5, and 5.0 mg/hole, were selected to observe the differences between transient and quasi-steady spray. The vapor penetration at the initial stage of the injection was greater for single-hole than that of multi-hole injector due to faster fuel pressure build-up process inside the sac volume.
Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.