Refine Your Search

Search Results

Technical Paper

Visualization of Fuel-Air Mixing Processes in a Small D.I. Diesel Engine Using the Liquid injection Technique

1988-02-01
880296
Simplified visualization of the fuel spray developing process in a small D.I. diesel engine was made by the liquid injection technique. In this technique, a liquid fuel was injected into another liquid to simulate injection into a high pressure gaseous atmosphere. For obtaining spray characteristics in the liquid similar to a diesel spray in a high-pressure gaseous atmosphere, the similarity principles based on the Reynolds number of the fuel flow at a nozzle hole and empirical equations of the spray penetration including the breakup length were introduced in this study. Especially, the injector was newly designed for the liquid injection technique based on these similarity principles. The behavior of the spray in a swirling flow was investigated. The spray with different breakup length shows different behavior in the same swirling flow.
Technical Paper

Vapor/Liquid Behaviors in Split-Injection D.I. Diesel Sprays in a 2-D Model Combustion Chamber

2003-05-19
2003-01-1837
Some experimental investigations have shown that the trade-off curve of NOx vs. particulate of a D.I. diesel engine with split-injection strategies can be shifted closer to the origin than those with a single-pulse injection, thus reducing both particulate and NOx emissions significantly. It is clear that the injection mass ratios and the dwell(s) between injection pulses have significant effects on the combustion and emissions formation processes in the D.I. diesel engine. However, how and why these parameters significantly affect the engine performances remains unexplained. The effects of both injection mass ratios and dwell between injections on vapor/liquid distributions in the split-injection diesel sprays impinging on a flat wall have been examined in our previous work.
Technical Paper

Two-Dimensional Measurements of the Fuel Vapor Concentration in the Combustion Chamber of a SI Engine with Laser Rayleigh Scattering

1992-10-01
922389
An experimental study was made of the two-dimensional distributions of the fuel vapor concentration simulated by Freon-12 in the combustion chamber of a SI engine. Laser Rayleigh scattering was applied for this remote, nonintrusive and highly space- and time-resolved measurement. The original engine was modified to introduce YAG laser-induced sheet light into the combustion chamber and the scattered light was captured by a CCD camera fitted with a gated double-microchannel plate image intensifier. The results showed that the fuel vapor concentration was highly heterogeneous during the intake stroke and the inhomogeneity decreased in the compression stroke. But, even at the end of the compression stroke, a number of small lumps of inhomogeneous mixture still existed randomly in the engine combustion chamber, which is assumed to cause the heterogeneity of the mixture strength field at the spark discharge.
Technical Paper

Total In-Cylinder Sampling Experiment on Emission Formation Processes in a D.I. Diesel Engine

1990-10-01
902062
An experimental study on emission formation processes, such as these of nitric oxide, particulate and total hydrocarbon in a small direct injection (D.I.) diesel engine was carried out by using a newly developed total in-cylinder sampling technique. The sampling method consisted of rapidly opening a blowdown valve attached to the bottom of the piston bowl, and quickly transferring most of the in-cylinder contents into a large sampling chamber below the piston. No modification of the intake and exhaust ports in a cylinder head was required for the installation of the blowdown apparatus. The sampling experiment gave a history of spatially-averaged emission concentrations in the cylinder. The effects of several engine variables, such as the length-to-diameter ratio of the nozzle hole, the ratio of the piston bowl diameter to the cylinder bore and the intake swirl ratio, on the emission formation processes were investigated.
Technical Paper

Three-Dimensional Spray Distributions in a Direct Injection Diesel Engine

1994-09-01
941693
Experiments and modeling of a spray impinged onto a cavity wall of a simulated piston were performed under simulated diesel engine conditions (pressure and density) at an ambient temperature. The diesel fuel was delivered from a Bosch-type injection pump to a single-hole nozzle, the hole being drilled in the same direction as the original five-hole nozzle. The fuel was injected into a high-pressure bomb in which an engine combustion chamber, composed of a piston, a cylinder head and a cylinder liner, was installed. Distributions of the spray impinged on the simulated combustion chamber were observed from various directions while changing some of the experimental parameters, such as combustion chamber shape, nozzle projection and top-clearance. High-speed photography was used in the constant volume bomb to examine the effect of these parameters on the spray distributions.
Technical Paper

Swirl Measurements and Modeling in Direct Injection Diesel Engines

1988-02-01
880385
A simple, but useful method is described for predicting the swirl speed during the compression process in a direct injection diesel engine. The method is based on the idea of dividing the combustion chamber into two volumetric regions and computing the variation of the angular momentum in each region. Laser doppler velocimeter measurements in a motored engine proved the validity of the idea that the volume in the combustion chamber should be treated as two regions, that is, the cylindrical volume inside the piston-cavity radius, and the annular volume outside the piston-cavity radius. Distributions of tangential velocities were measured for different conditions, including the intake port configuration, the piston cavity shape, the compression ratio and the engine speed. These results were integrated in the two regions and provided the measured “two volume-regions” swirl ratio. At the same time, the computation was carried out for the same experimental conditions.
Technical Paper

Spray and Flame Behaviors of Ethanol-Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2015-09-01
2015-01-1950
Different ethanol-gasoline blended fuels, namely the E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle in a condition simulating the near top dead center (TDC). Two typical injection pressures of 10 and 20MPa were adopted to clarify the spray and flame behaviors. The correlation of the upstream unburned fuel and the flame propagation was analyzed by the high-speed imaging of shadowgraph. Moreover, the effects of ignition timing and location on the flame propagation were discussed based on the imaging of OH* chemiluminescence.
Technical Paper

Spray Characteristics of Group-hole Nozzle for D.I. Diesel Engine

2003-10-27
2003-01-3115
Reduction of orifice diameter of nozzle is advantageous to the fuel atomization in a D.I. diesel engine. However, the diameter reduction is usually accompanied with decrease of spray tip penetration, thus worsening fuel spatial-distribution and fuel-air mixing. In this paper, a group-hole nozzle concept was proposed to solve the problem resulting from minimization of orifice diameter. Compared to the conventional multi-hole nozzle, group-hole nozzle has a series group of orifices, and each group consists of two micro-orifices with a small spatial interval and small angle. For examining the characteristics of the spray injected by the group-hole nozzle, the ultraviolet-visible laser absorption-scattering (LAS) imaging technique was adopted to determine vapor concentration and droplets density as well as other spray characteristics such as spray angle and penetration of both vapor and liquid phases.
Technical Paper

Split Injection Spray Development, Mixture Formation, and Combustion Processes in a Diesel Engine Piston Cavity: Rig Test and Real Engine Results

2018-09-10
2018-01-1698
The objectives of this study are to investigate the effects of premixed charge compression ignition (PCCI) strategies with split injection on soot emission characteristics. The split injection conditions included three injection intervals (1.1 ms, 1.3 ms, and 1.5 ms) and three injection quantity fraction ratios (Q1/Q2 = 10.0/14.6 mm3/st, 15.2/9.4 mm3/st, and 20.0/4.6 mm3/st). The results in real engine tests showed that shorter injection intervals, and the 1st injection quantity contributes to reduced soot emissions. A rig test with high-pressure and high-temperature constant-volume vessel (CVV) and a two-dimensional (2D) model piston cavity were used to determine correlations between injection conditions and soot emissions. During the rig test, fuel was injected into the CVV by a single-hole nozzle under split injection strategies. The injection strategies include the same injection intervals and quantity fraction ratios as in the real engine test.
Journal Article

Small Injection Amount Fuel Spray Characteristics Injected by Hole-Type Nozzle for D.I. Diesel Engine

2014-11-11
2014-32-0124
Spray characteristics under very small injection amount injected by the hole-type nozzle for a D.I. Diesel engine were investigated using the spray test rig consisting a high-pressure and high-temperature constant volume vessel with optical accesses and a common rail injection system. The Laser Absorption Scattering (LAS) technique was used to visualize the liquid and vapor phase distributions in the evaporating spray. In the very small injection amount condition of the evaporating and free (no wall impingement) spray, the both spray tip penetration and spray angle are larger than those of the non-evaporating free spray. This tendency contradicts the previous observation of the diesel spray with large injection amount and the quasi steady state momentum theory. In the case of the spray impinging on a 2-dimensional piston cavity wall, the spray tip penetration of the evaporating spray is larger than that of the non-evaporating spray.
Technical Paper

Simulation Study of Effects of Injection Rate Profile and Air Entrainment Characteristics on D.I. Diesel Combustion

1996-10-01
962059
A calculative investigation was performed in order to examine the effects of injection rate profile and air entrainment characteristics on exhaust emission using a phenomenological spray combustion model. The calculations were made of an engine with a bore of 114 mm and a stroke of 130 min while changing the injection rate profile and the air entrainment characteristics. As a result of the calculations, effective measures were found for simultaneous reduction of NOx and smoke emissions.
Technical Paper

Simplified Three-Dimensional Modeling of Mixture Formation and Combustion in a D.I. Diesel Engine

1989-02-01
890269
This paper describes a simplified three-dimensional modeling of the mixture formation and combustion processes in a direct injection (D.I.) diesel engine. The fuel-air mixing and combustion processes in the D.I. diesel engine can be characterized by the combined effects of some processes, such as spray trajectory, fuel vaporization, gas motion, combustion, and dispersion of gaseous components and enthalpy. Each process was computed by a simple sub-model based on the experimental results and empirical equations. The dispersion process was, however, computed by solving the conservation equations of the gaseous components and enthalpy by the finite difference technique. The sub-models were combined for predicting the three-dimensional distributions of the gaseous components and the temperature in the combustion chamber, and finally the cylinder pressure, heat release rate, engine performance and pollutant emissions (NO and soot).
Technical Paper

Quantitative Measurement of Droplets and Vapor Concentration Distributions in Diesel Sprays by Processing UV and Visible Images

2001-03-05
2001-01-1294
In order to measure the droplets and vapor concentration inside a fuel spray, a dual-wavelength laser absorption-scattering technique was developed using the second harmonic (532nm) and the fourth harmonic (266nm) of a Nd:YAG laser and using dimethylnaphthalene as the test fuel. The investigation results show that dimethylnaphthalene, which has physical properties similar to diesel fuel, is almost transparent to visible light near 532nm and is a strong absorber of ultraviolet light near 266nm. Based on this result, the vapor concentration in a fuel spray can be determined by the two separate measurements: a transmission measurement at a non-absorbing wavelength to detect the droplets optical thickness and a transmission measurement at an absorbing wavelength to detect the joint vapor and droplets optical thickness. The droplets density can be determined by extinction imaging through the transmission at the non-absorbing wavelength.
Technical Paper

Quantitative Imaging of the Fuel Concentration in a SI Engine with Laser Rayleigh Scattering

1993-10-01
932641
Quantitative imaging of the fuel concentration distribution was made in the combustion chamber of a propane-fueled spark ignition (SI) engine with the employment of laser-sheet-induced Rayleigh scattering technique for realizing the remote, nonintrusive and highly space- and time-resolved measurement. The original engine was modified to introduce YAG laser-induced sheet light into the combustion chamber and the scattered light was captured by a CCD camera fitted with a gated double-micro- channel plate image intensifier. The measurements were done at the crank angle of 270°ATDC in the combustion chamber of the engine motored at 200rpm with an air fuel ratio of 13 for various injection timing, injection direction and intake flow. The results show that with an appropriate matching of fuel injection timing, injection direction and intake flow, a stratified distribution of the fuel concentration can be realized.
Technical Paper

PLIF Measurements of the Cyclic Variation of Mixture Concentration in a SI Engine

1994-03-01
940988
Planar laser-induced fluorescence (PLIF) technique was employed to perform the quantitative measurements of the cyclic variation of mixture concentration in the combustion chamber of a spark ignition (SI) engine. Nitrogen dioxide was used as the fluorescence tracer to simulate the fuel vapor. A Nd:YAG laser operated at its second harmonic wavelength was employed as the light source. The original engine was modified to introduce laser sheet light into the combustion chamber and the induced fluorescence was captured by a CCD camera fitted with a gated image intensifier. The measurements were done at the engine crank angles of 180° ∼ 300° ATDC with the engine speeds of 200 ∼ 400 rpm and the injection timings of -70 °, 50° and 100° ATDC. A theoretical analysis was made to describe the cyclically varying characteristics of the mixture concentration.
Technical Paper

Optimizing Spray Behavior to Improve Engine Performance and to Reduce Exhaust Emissions in a Small D.I. Diesel Engine

1989-02-01
890463
The effects of engine parameters, such as spray characteristics and combustion chamber geometry on performance and exhaust emissions in a small D.I. diesel engine were investigated to find out the optimum way of improving the engine. Diesel spray injected into a high-pressure vessel was photographically analyzed to guess the spray behavior in a firing diesel engine. The ratio of hole length to the diameter of a nozzle (L/D) was varied from 3 to 7 as the main parameter of the nozzle. Piston cavity diameter and intake swirl were chosen as the other parameters. The effect of the above parameters was investigated in terms of brake specific fuel consumption (BSFC), exhaust smoke, nitric oxides (NOx) and total hydrocarbon (THC). The L/D of the nozzle is concluded to be of major importance in terms of BSFC and THC emission. Smaller piston cavity diameters lead to lower exhaust smoke, but to a higher level of NOx emission.
Technical Paper

Numerical Studies of Spray Combustion Processes of Palm Oil Biodiesel and Diesel Fuels using Reduced Chemical Kinetic Mechanisms

2014-04-01
2014-01-1143
Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate.
Technical Paper

Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines

1976-02-01
760129
A mathematical model was developed for predicting the concentration of exhaust nitric oxide, soot and other emissions in a direct injection diesel engine. In the model, it was emphasized to describe the phenomena occurring in the combustion chamber from the microscopic point of view. The prediction was based on the knowledges concerning a single droplet as well as the droplet size distribution in a fuel spray and the spatial and temporal distribution histories of fuel in a combustion chamber. The heterogeneous field of temperature and equivalence ratio, and uniform pressure in the cylinder were postulated. The heat release model gives the burning rate of injected fuel and pressure and temperature history in the cylinder. The concentration of nitric oxide and soot in the cylinder was predicted by the emission formation model.
Technical Paper

Mixture Formation and Combustion Processes of Multi-Hole Nozzle with Micro Orifices for D.I. Diesel Engines

2007-10-29
2007-01-4049
In order to investigate effects of the multi-hole nozzle with micro orifices on mixture formation processes in Direct-Injection Diesel engines, mixture characteristics were examined via an ultraviolet-visible laser absorption scattering (LAS) technique under various injectors. The injection quantity per orifice per cycle was reduced by nozzle hole sizes. The LAS technique can provide the quantitative and simultaneous measurements of liquid and vapor phases concentration distributions inside of the fuel spray. Mass of ambient gas entrained into the spray, liquid/ vapor mass and mean equivalence ratio of total fuel were obtained based on Lambert Beer's law. As a result, the leaner and more homogeneous fuel-gas mixture can be achieved by reducing the nozzle hole diameter, in the meanwhile more ambient gas were entrained into the spray. Moreover, relationships between mixture formation and D.I.
Technical Paper

Measurement of Turbulent Flow in the Combustion Chamber of a D.I. Diesel Engine

1990-02-01
900061
This paper presents the experimental analysis for the turbulence in the combustion chamber of a direct injection (D.I.) diesel engine. A dual beam mode, forward-scattering laser doppler velocimeter was applied to the flow measurement in a four-stroke, single-cylinder direct injection diesel engine of 110 mm bore and 125 mm stroke. The turbulence component was separated from instantaneous velocity using a high-pass filter. As a result, the difference in turbulent intensity between the intake and compression processes was discussed. Also, the effect of intake port and piston cavity shapes, the compression ratio and the engine speed on the turbulent intensity were clarified. In addition, the empirical equation for the decay of turbulent intensity in the compression process was expressed by a function of the Reynolds number based on the mean swirling flow.
X