Refine Your Search

Search Results

Technical Paper

Vaporization and Turbulence Characteristics of High Pressure Gasoline Sprays Impinging on a Wall

2019-12-19
2019-01-2247
To get a better understanding of the characteristics of the high pressure gasoline sprays impinging on a wall, a fundamental study was conducted in a high-temperature high-pressure constant volume vessel under the simulated engine conditions of in-cylinder pressures, temperatures, and wall temperatures. The injection pressure was varied from 20 to 120 MPa. The spray tip penetration, vapor mass distribution, and vaporization rate were quantitatively measured with the laser absorption-scattering (LAS) technique. The velocity fields of the wall-impinging sprays under vaporizing conditions were measured with the particle image velocimetry (PIV) technique using silicone oil droplets as tracers. The effects of injection pressure and spray/wall interactions on spray characteristics were investigated. The results showed that the increased injection pressure improved penetration, vaporization, and turbulence of the sprays.
Technical Paper

Vapor/Liquid Behaviors in Split-Injection D.I. Diesel Sprays in a 2-D Model Combustion Chamber

2003-05-19
2003-01-1837
Some experimental investigations have shown that the trade-off curve of NOx vs. particulate of a D.I. diesel engine with split-injection strategies can be shifted closer to the origin than those with a single-pulse injection, thus reducing both particulate and NOx emissions significantly. It is clear that the injection mass ratios and the dwell(s) between injection pulses have significant effects on the combustion and emissions formation processes in the D.I. diesel engine. However, how and why these parameters significantly affect the engine performances remains unexplained. The effects of both injection mass ratios and dwell between injections on vapor/liquid distributions in the split-injection diesel sprays impinging on a flat wall have been examined in our previous work.
Technical Paper

Total In-Cylinder Sampling Experiment on Emission Formation Processes in a D.I. Diesel Engine

1990-10-01
902062
An experimental study on emission formation processes, such as these of nitric oxide, particulate and total hydrocarbon in a small direct injection (D.I.) diesel engine was carried out by using a newly developed total in-cylinder sampling technique. The sampling method consisted of rapidly opening a blowdown valve attached to the bottom of the piston bowl, and quickly transferring most of the in-cylinder contents into a large sampling chamber below the piston. No modification of the intake and exhaust ports in a cylinder head was required for the installation of the blowdown apparatus. The sampling experiment gave a history of spatially-averaged emission concentrations in the cylinder. The effects of several engine variables, such as the length-to-diameter ratio of the nozzle hole, the ratio of the piston bowl diameter to the cylinder bore and the intake swirl ratio, on the emission formation processes were investigated.
Technical Paper

Three-Dimensional Spray Distributions in a Direct Injection Diesel Engine

1994-09-01
941693
Experiments and modeling of a spray impinged onto a cavity wall of a simulated piston were performed under simulated diesel engine conditions (pressure and density) at an ambient temperature. The diesel fuel was delivered from a Bosch-type injection pump to a single-hole nozzle, the hole being drilled in the same direction as the original five-hole nozzle. The fuel was injected into a high-pressure bomb in which an engine combustion chamber, composed of a piston, a cylinder head and a cylinder liner, was installed. Distributions of the spray impinged on the simulated combustion chamber were observed from various directions while changing some of the experimental parameters, such as combustion chamber shape, nozzle projection and top-clearance. High-speed photography was used in the constant volume bomb to examine the effect of these parameters on the spray distributions.
Technical Paper

Spray and Mixture Properties of Hole-Type Injector for D. I. Gasoline Engine-Comparison of Experiment and CFD Simulation-

2007-07-23
2007-01-1850
An experimental and numerical study was conducted on the spray and mixture properties of a hole-type injector for direct injection (D. I.) gasoline engines. The Laser Absorption Scattering (LAS) technique was adopted to simultaneously measure the spatial concentration distributions and the mass of the liquid and vapor phases in the fuel spray injected into a high-pressure and high-temperature constant volume vessel. The experimental results were compared to the numerical calculation results using three-dimensional CFD and the multi-objective optimization. In the numerical simulation, the design variable of the spray model was optimized by choosing spray tip penetration, and mass of liquid and vapor phases as objective functions.
Technical Paper

Spray and Flame Behaviors of Ethanol-Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2015-09-01
2015-01-1950
Different ethanol-gasoline blended fuels, namely the E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle in a condition simulating the near top dead center (TDC). Two typical injection pressures of 10 and 20MPa were adopted to clarify the spray and flame behaviors. The correlation of the upstream unburned fuel and the flame propagation was analyzed by the high-speed imaging of shadowgraph. Moreover, the effects of ignition timing and location on the flame propagation were discussed based on the imaging of OH* chemiluminescence.
Technical Paper

Split Injection Spray Development, Mixture Formation, and Combustion Processes in a Diesel Engine Piston Cavity: Rig Test and Real Engine Results

2018-09-10
2018-01-1698
The objectives of this study are to investigate the effects of premixed charge compression ignition (PCCI) strategies with split injection on soot emission characteristics. The split injection conditions included three injection intervals (1.1 ms, 1.3 ms, and 1.5 ms) and three injection quantity fraction ratios (Q1/Q2 = 10.0/14.6 mm3/st, 15.2/9.4 mm3/st, and 20.0/4.6 mm3/st). The results in real engine tests showed that shorter injection intervals, and the 1st injection quantity contributes to reduced soot emissions. A rig test with high-pressure and high-temperature constant-volume vessel (CVV) and a two-dimensional (2D) model piston cavity were used to determine correlations between injection conditions and soot emissions. During the rig test, fuel was injected into the CVV by a single-hole nozzle under split injection strategies. The injection strategies include the same injection intervals and quantity fraction ratios as in the real engine test.
Technical Paper

Simultaneous Flow Field Measurement of D.I. Gasoline Spray and Entrained Ambient Air by LIF-PIV Technique

2003-03-03
2003-01-1115
The spray and the entrained ambient air motions produced by a swirl-type D.I. gasoline injector were simultaneously measured by combining the laser induced fluorescence (LIF) and the particle image velocimetry (PIV) techniques. For the simultaneous measurement of the spray and the ambient air velocities, the succeeding two image pairs of the fuel spray and the ambient air tracer particles were captured by using a Nd:YAG laser light sheet (wave length: 532 nm) and two high-resolution CCD cameras. The light emitted from the fluorescent tracer clouds was discriminated from the light scattered from the droplets in the fuel spray by an optical low-pass filter (>560 nm), and the Mie scattering signals from the spray particles were screened by a band-pass filter ranging from 520 to 545 nm. The spray and the tracer particle images were analyzed by the double frame cross-correlation PIV technique to obtain the droplets and ambient air velocity distributions.
Technical Paper

Quantitative Measurement of Liquid and Vapor Phase Concentration Distributions in a D.I. Gasoline Spray by the Laser Absorption Scattering (LAS) Technique

2002-05-06
2002-01-1644
To get quantitative measurements of liquid and vapor phase concentration distributions in a gasoline spray, a laser-based absorption and scattering (LAS) technique was developed. The LAS technique adopts ultraviolet and visible lasers as light sources and a test fuel, which absorbs the ultraviolet light but does not absorb the visible light, instead of gasoline. The LAS principle is based on the incident light extinction in the ultraviolet band due to both vapor absorption and droplets scattering, whereas in the visible band, the incident light extinction is due only to the droplet scattering. The absorption spectra and molar absorption coefficients of the candidate test fuels including p-xylene, benzene and toluene, all of which have physical properties similar to gasoline, were investigated, and p-xylene was finally selected as a test fuel. Measurement accuracy of the LAS technique was discussed.
Technical Paper

Quantitative Measurement of Droplets and Vapor Concentration Distributions in Diesel Sprays by Processing UV and Visible Images

2001-03-05
2001-01-1294
In order to measure the droplets and vapor concentration inside a fuel spray, a dual-wavelength laser absorption-scattering technique was developed using the second harmonic (532nm) and the fourth harmonic (266nm) of a Nd:YAG laser and using dimethylnaphthalene as the test fuel. The investigation results show that dimethylnaphthalene, which has physical properties similar to diesel fuel, is almost transparent to visible light near 532nm and is a strong absorber of ultraviolet light near 266nm. Based on this result, the vapor concentration in a fuel spray can be determined by the two separate measurements: a transmission measurement at a non-absorbing wavelength to detect the droplets optical thickness and a transmission measurement at an absorbing wavelength to detect the joint vapor and droplets optical thickness. The droplets density can be determined by extinction imaging through the transmission at the non-absorbing wavelength.
Technical Paper

Optimizing Spray Behavior to Improve Engine Performance and to Reduce Exhaust Emissions in a Small D.I. Diesel Engine

1989-02-01
890463
The effects of engine parameters, such as spray characteristics and combustion chamber geometry on performance and exhaust emissions in a small D.I. diesel engine were investigated to find out the optimum way of improving the engine. Diesel spray injected into a high-pressure vessel was photographically analyzed to guess the spray behavior in a firing diesel engine. The ratio of hole length to the diameter of a nozzle (L/D) was varied from 3 to 7 as the main parameter of the nozzle. Piston cavity diameter and intake swirl were chosen as the other parameters. The effect of the above parameters was investigated in terms of brake specific fuel consumption (BSFC), exhaust smoke, nitric oxides (NOx) and total hydrocarbon (THC). The L/D of the nozzle is concluded to be of major importance in terms of BSFC and THC emission. Smaller piston cavity diameters lead to lower exhaust smoke, but to a higher level of NOx emission.
Technical Paper

Numerical Studies of Spray Combustion Processes of Palm Oil Biodiesel and Diesel Fuels using Reduced Chemical Kinetic Mechanisms

2014-04-01
2014-01-1143
Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate.
Technical Paper

Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines

1976-02-01
760129
A mathematical model was developed for predicting the concentration of exhaust nitric oxide, soot and other emissions in a direct injection diesel engine. In the model, it was emphasized to describe the phenomena occurring in the combustion chamber from the microscopic point of view. The prediction was based on the knowledges concerning a single droplet as well as the droplet size distribution in a fuel spray and the spatial and temporal distribution histories of fuel in a combustion chamber. The heterogeneous field of temperature and equivalence ratio, and uniform pressure in the cylinder were postulated. The heat release model gives the burning rate of injected fuel and pressure and temperature history in the cylinder. The concentration of nitric oxide and soot in the cylinder was predicted by the emission formation model.
Technical Paper

Insight on Early Spray Formation Process of a High-Pressure Swirl Injector for DISI Engines

2003-05-19
2003-01-1809
An early formation process of the spray, which was injected by a high-pressure swirl-type injector that is widely used in direct injection spark ignition (DISI) gasoline engines, was investigated through image analyzing techniques. The sprays were illuminated both by an Nd:YAG laser light sheet for getting the spray tomograms and by a tungsten lamp for getting the scattered back light shadow images of the sprays. The sprays were imaged by using a high-resolution CCD camera and a high-speed digital imaging system. The early development aspects of the spray were investigated in detail through the measurement of the tip penetration, cone angle and width of the early spray. At the start of injection, the liquid column emerges first, and it forms the “pre-swirl spray” without the swirl component. Following the liquid column, the liquid sheet emerges, however its radial velocity component is weak to form the complete hollow-cone spray. This spray changes into the “weak-swirl spray”.
Technical Paper

Injection Strategy to Enhance Mixture Formation and Combustion of Fuel Spray in Diesel Engine

2018-04-03
2018-01-0241
Increasing the injection pressure and splitting the injection stage are the major approaches for a diesel engine to facilitate the fuel-air mixture formation process, which determines the subsequent combustion and emission formation. In this study, the free spray was injected by a single-hole nozzle with a hole-diameter of 0.111 mm. The impinging spray, formed by a two-dimensional (2D) piston cavity having the same shape as a small-bore diesel engine, was also investigated. The injection process was performed by both with and without pre-injection. The main injection was carried out either as a single main injection with injection pressure of 100 MPa (Pre + S100) or a split main injection with 160 MPa defined by the mass fraction ratio of 3:1 (Pre + D160_3-1). The tracer Laser Absorption Scattering (LAS) technique was adopted to observe the spray mixture formation process. The ignition delay/location and the soot formation in the spray flame were analyzed by the two-color method.
Journal Article

Ignition and Combustion Characteristics of Wall-Impinging Sprays Injected by Group-Hole Nozzles for Direct-Injection Diesel Engines

2008-10-06
2008-01-2469
The concept of two closely spaced micro-orifices (group hole nozzle) has been studied as a promising technology for the reduction of soot emission from direct injection (DI) diesel engines by improving the fuel atomization and evaporation. One of the main issues on group hole nozzle is the arrangement of orifices with various distances and angles. In this study, the ignition and combustion characteristics of wall-impinging diesel sprays from group-hole nozzles were investigated with various angles between two micro-orifices (included angles). A laser absorption scattering (LAS) technique for non-axisymmetric sprays, developed based on a LAS technique for axisymmetric spray, was applied to investigate the liquid/vapor mass distribution of wall-impinging sprays. The direct flame images and OH radical images inside a high pressure constant volume vessel were captured to analyze the effect of included angle on spray ignition and combustion characteristics.
Technical Paper

Group-Hole Nozzle Effects on Mixture Formation and In-cylinder Combustion Processes in Direct-Injection Diesel Engines

2007-10-29
2007-01-4050
The group-hole (GH) nozzle concept that uses two closely spaced micro-orifices to substitute the conventional single orifice has the potential to facilitate better fuel atomization and evaporation, consequently attenuate the soot emission formed in direct-injection (D.I.) diesel engines. Studies of quantitative mixture properties of the transient fuel spray injected by the group-hole nozzles were conducted in a constant volume chamber via the laser absorption-scattering (LAS) technique, in comparison with conventional single-hole nozzles. Specific areas investigated involved: the non-evaporating and the evaporating ambient conditions, the free spray and the spray impinging on a flat wall conditions. The particular emphasis was on the effect of one of key parameters, the interval between orifices, of the group-hole (SH) nozzle structure.
Journal Article

Fuel Spray Evaporation and Mixture Formation Processes of Ethanol/Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2012-10-23
2012-32-0018
Ethanol is regarded as the promising alternative fuel for gasoline to meet the strict low emission standard for spark ignition engines. In this study, the spray mixture formation process for different ethanol blended fuels, including E0 (gasoline), E85 (85% volume of ethanol and 15% volume of gasoline) and E100 (ethanol), has been evaluated using hole-type nozzle by the measurement of Laser Absorption Scattering (LAS) technique in a constant volume vessel. Based on the principle of LAS, the quantitative vapor and liquid phase distribution from different ethanol blended fuel can be obtained by the light extinction regime. Aiming to analyze the effect of mixture formation and evaporation for different components of blended fuel or pure gasoline and ethanol, the vapor distribution of gasoline was determined by using p-xylene, which had similar physical properties to gasoline, especially higher boiling temperature components, and higher absorption for ultraviolet.
Technical Paper

Fuel Droplet Size Distribution in Diesel Combustion Chamber

1974-02-01
740715
In order to determine spray droplet size in a diesel engine, fuel was injected into high-pressure, room-temperature gaseous environments with a diesel engine injection system. Droplet size was measured using the liquid immersion sampling technique with a mixture of water-methylcellulose solution and ethanol used as an immersion liquid for diesel fuel oil. The volume distribution of diesel spray droplets is well correlated with chi square distribution with freedom, ϕ = 8, in the range of this investigation. The Sauter mean diameter increased with increasing back pressure, with the amount of fuel in a spray, and with decrease in pump speed. An empirical correlation was developed between effective injection pressure, air density, the quantity of the fuel delivery, and the Sauter mean diameter of spray droplets.
Technical Paper

Effects of Nozzle Hole Diameter and Injection Pressure on Flame Lift-Off and Soot Formation in D.I. Diesel Combustion

2011-08-30
2011-01-1813
Previous research has shown that the reduced nozzle hole diameter and elevated injection pressure are effective for preparing a uniform fuel-air mixture in a direct injection (D.I.) Diesel engine. A micro-hole nozzle with a hole diameter of 0.08 mm and an ultra-high injection pressure of 300 MPa have been employed to investigate the mixture formation process under various conditions. The aim of the current work is to clarify the effect of nozzle hole diameter and injection pressure on flame lift-off and soot formation processes. The free sprays from the micro-hole and conventional nozzles were investigated at a high-temperature, high-pressure constant volume vessel. A high-speed video camera system was employed to record the non-vaporizing sprays and combustion. The direct photography of OH chemiluminescence was used to provide information about the high temperature combustion process and to measure the flame lift-off length.
X