Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

The In-Situ Measurement of the Thermal Diffusivity of Combustion Chamber Deposits in Spark Ignition Engines

1992-02-01
920513
Combustion chamber deposits in spark ignition engines act as thermal insulators and can lead to octane requirement increase. The thermal properties of deposits are not well documented, the reported thermal diffusivity values vary by two orders of magnitude. Two thermal property measurement techniques were compared, the flash and steady illumination laser methods. The steady laser method was more suitable for deposit property measurement. A comparison was made of the thermal properties of deposits grown with a base fuel with the thermal properties of deposits grown with the base fuel doped with reformer bottoms. For the clean fuel the thermal diffusivity ranged from 3.5 to 3.9-7 m2/s, at various locations around the combustion chamber. For the fuel doped with reformer bottoms the thermal diffusivity ranged from 1.1 to 1.9-7 m2/s at different locations within the combustion chamber.
Technical Paper

The Effect of In-Cylinder Temperature on the Ignition Initiation Location of a Pre-Chamber Generated Hot Turbulent Jet

2018-04-03
2018-01-0184
Ignition location is one of the important factors that affect the thermal efficiency, exhaust emissions and knock sensitivity in premixed-charge ignition engines. However, the ignition initiation locations of pre-chamber generated turbulent jet ignition, which is a promising ignition enhancement method, are not clearly understood due to the complex physics behind it. Motivated by this, the ignition initiation location of a transient turbulent jet in a constant volume combustor is analyzed by the use of computational fluid dynamics (CFD) simulations. In the CFD simulations of this work, commercial codes KIVA-3 V release 2 and an in-house-developed chemical solver with a detailed mechanism for H2/air mixtures are used. Comparisons are performed between simulated and experimental ignition initiation locations, and they agree well with one another. A detailed parametric study of the influence of in-cylinder temperature on the ignition initiation location is also performed.
Technical Paper

Testing Heuristic Tools for Life Support System Analysis

2007-07-09
2007-01-3225
BioSim is a simulation tool which captures many basic life support functions in an integrated simulation. Conventional analyses can not efficiently consider all possible life support system configurations. Heuristic approaches are a possible alternative. In an effort to demonstrate efficacy, a validating experiment was designed to compare the configurational optima discovered by heuristic approaches and an analytical approach. Thus far, it is clear that a genetic algorithm finds reasonable optima, although an improved fitness function is required. Further, despite a tight analytical fit to data, optimization produces disparate results which will require further validation.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

Redundancy Testing and Cost Assessment for Environmental Control and Life Support Systems

2009-07-12
2009-01-2495
Environmental control and life support systems are usually associated with high demands for performance robustness and cost efficiency. However, considering the complexity of such systems, determining the balance between those two design factors is nontrivial for even the simplest space missions. Redundant design is considered as a design optimization dilemma since it usually means higher system reliability as well as system cost. Two coupled fundamental questions need to be answered. First, to achieve certain level of system reliability, what is the corresponding system cost? Secondly, given a budget to improve system reliability, what is the most efficient design for component or subsystem redundancy? The proposed analysis will continue from previous work performed on series systems by expanding the scope of the analysis and testing parallel systems. Namely, the online and offline redundancy designs for a Lunar Outpost Mission are under consideration.
Technical Paper

Reconfigurable Control System Design for Future Life Support Systems

2008-06-29
2008-01-1976
A reconfigurable control system is an intelligent control system that detects faults within the system and adjusts its performance automatically to avoid mission failure, save lives, and reduce system maintenance costs. The concept was first successfully demonstrated by NASA between December 1989 and March 1990 on the F-15 flight control system (SRFCS), where software was integrated into the aircraft's digital flight control system to compensate for component loss by reconfiguring the remaining control loop. This was later adopted in the Boeing X-33. Other applications include modular robotics, reconfigurable computing structure, and reconfigurable helicopters. The motivation of this work is to test such control system designs for future long term space missions, more explicitly, the automation of life support systems.
Technical Paper

Performance of Alcohol Blends in Diesel Engines

1981-04-01
810681
A normally aspirated, four-stroke diesel engine was tested under operation with two alcohol containing fuel blends. The fuels contained ethanol, butanol, heavy virgin distillate, diesel Nos. 2 and 4, and a cetane improver. The proportions of the components were selected to give blends with properties within the range of diesel No. 2. The final blends contained 25 and 43.7 percent alchohols. Test results showed a loss in power due to the reduced heating value of the blends, and some deterioration of performance at light loads. At intermediate to heavy loads, satisfactory performance was obtained.
Technical Paper

High Temperature Cyclic Fatigue Damage Modeling of Alumina

1994-03-01
940251
Cyclic loading is not as damaging as static loading of ceramics at high temperatures. Microcrack growth retardation has been established as a mechanism for increasing the durability of ceramics at high temperatures. A combined experimental and theoretical approach provides a mechanistic understanding of the deformation and failure processes in ceramic materials at high temperatures. Results demonstrate that the high temperature behavior of some ceramic material systems are controlled by the behavior of the grain boundary phase whose response is considerably different under static and cyclic loading.
Technical Paper

Experimental Investigation of Tripod Constant Velocity (CV) Joint Friction

2006-04-03
2006-01-0582
Constant Velocity (CV) joints are an integral part of modern vehicles, significantly affecting steering, suspension, and vehicle vibration comfort levels. Each driveshaft comprises of two types of CV joints, namely fixed and plunging types connected via a shaft. The main friction challenges in such CV joints are concerned with plunging CV joints as their function is to compensate for the length changes due to steering motion, wheel bouncing and engine movement. Although CV joints are common in vehicles, there are aspects of their internal friction and contact dynamics that are not fully understood or modeled. Current research works on modeling CV joint effects on vehicle performance assume constant empirical friction coefficient values. Such models, however are not always accurate, especially under dynamic conditions which is the case for CV tripod joints.
Technical Paper

Estimating the Expected Effectiveness of Enhanced Ground Proximity Warning Systems in Reducing Controlled Flight Into Terrain by Aircraft Operating under Part-135

2000-04-11
2000-01-2105
In order to reduce “Controlled Flight Into Terrain” (CFIT) accidents the FAA proposed, in 1998, the regulation that Enhanced Ground Proximity Warning Systems (EGPWS) should be installed in all turbine powered aircraft with 6 or more seats for passengers, operating under Federal Aviation Regulation Part-135 (commuter and charter operations). We analyzed all Part-135 crashes of this type using NTSB aviation accident data from 1983 to 1998. There were 15 crashes involving CFIT. We asked 26 experienced pilots to examine the brief narratives of the crashes and to estimate the probability that had the aircraft been equipped with EGPWS, the crews would have avoided the crashes. Based on the ratings, the median probability that Part 135 crashes would be avoided using EGPWS was 59%. We describe the nature of the crashes, the human factors involved and the reasons why the enhanced terrain warning is only partly effective.
Technical Paper

Development and Validation of a Model for Predicting Hand Prehensile Movements

2006-07-04
2006-01-2329
A prediction model for hand prehensile movements was developed and validated. The model is based on a new approach that blends forward dynamics and a simple parametric control scheme. In the development phase, model parameters were first estimated using a set of hand grasping movement data, and then statistically analyzed. In the validation phase, the model was applied to novel conditions created by varying the subject group and size of the object grasped. The model performance was evaluated by the prediction errors under various novel conditions as compared to the benchmark values with no extrapolation. Analyses of the model parameters led to insights into human movement production and control. The resulting model also offers computational simplicity and efficiency, a much desired attribute for digital applications.
Technical Paper

Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine using Well-Defined Fuel Properties

2007-04-16
2007-01-0617
Biodiesel fuel can be produced from a wide range of source materials that affect the properties of the fuel. The diesel engine has become a highly tuned power source that is sensitive to these properties. The objectives of this research were to measure and predict the key properties of biodiesel produced from a broad range of source materials to be used as inputs for combustion modeling; and second to compare the results of the model with and without the biodiesel fuel definition. Substantial differences in viscosity, surface tension, density and thermal conductivity were obtained relative to reference diesel fuels and among the different source materials. The combustion model revealed differences in the temperature and emissions of biodiesel when compared to reference diesel fuel.
Technical Paper

Biomechanical Realism Versus Algorithmic Efficiency: A Trade-off in Human Motion Simulation Modeling

2001-06-26
2001-01-2090
The purpose this paper is to delineate why there exists a trade-off between biomechanical realism and algorithmic efficiency for human motion simulation models, and to illustrate how empirical human movement data and findings can be integrated with novel modeling techniques to overcome such a realism-efficiency tradeoff. We first review three major classes of biomechanical models for human motion simulation. The review of these models is woven together by a common fundamental problem of redundancy—kinematic and/or muscle redundancy. We describe how this problem is resolved in each class of models, and unveil how the trade-off arises, that is, how the computational demand associated with solving the problem is amplified as a model evolves from small scale to large scale, or from less realism to more realism.
Technical Paper

Analytical Descriptions of Service Loading Suitable for Fatigue Analysis

1997-04-08
971535
Service loading histories have the same general character for an individual route and the magnitudes vary from driver to driver. Both the magnitude and character of the loading history change from route to route and a linear scaling of one loading history does not characterize the variability of usage over a wide range of operating conditions. In this paper a technique for measuring and extrapolating cumulative exceedance diagrams to quantify the distribution of service loading in a vehicle is described. Monte Carlo simulations are coupled with the local stress strain approach for fatigue to obtain distributions of service loading. Fatigue life estimates based on the original loading histories are compared to those obtained from statistical descriptions of exceedance diagrams.
Technical Paper

Analysis of Residual Stresses and Cyclic Deformation for Induction Hardened Components

1995-02-01
950707
Induction hardening of mild steel components often results in significant improvements in the static and cyclic load capability, with comparatively small increases in cost. Members subjected primarily to torsional loading are a relevant subset of the broad range of induction hardened components. Due to the variation of material properties and residual stresses, failures are “initiated” at the traditional geometric locations predicted for homogeneous materials and also at subsurface sites. The introduction of shear based fatigue parameters has necessitated the consideration of the residual stress as a three dimensional quantity, especially when analyzing subsurface failures. Not considering the tensoral nature of the residual stress can lead to serious errors when estimating fatigue life, and for larger magnitude loadings, the residual stress field may relax.
Technical Paper

An Experimental and Analytical Study of the Fatigue Life of Weldments with Longitudinal Attachments

2001-03-05
2001-01-0085
Both the experimental results and the analytical predictions of this study confirm that the poor fatigue performance of weldments with longitudinal attachments is due to poor weld quality which in turn leads to either a cold-lap or a very small weld toe radius. as well as to the combination of a very high 3-D stress concentration, and very high tensile residual stresses. Consequently, a specially designed stress-concentration-reducing part termed “stress diffuser” incorporated in the wrap-around welds at the ends of the longitudinal attachments increased the fatigue strength of longitudinal attachments to equal that of transverse attachments but only when cold-laps were eliminated. The fatigue life predictions made using the a two-stage Initiation-Propagation (IP) Model were in good agreement with the experimental results. Procedures for correcting for the curved shape of the crack path are investigated.
Technical Paper

An Empirical Method for Estimating the Fatigue Resistance of Tensile-Shear Spot Welds

1983-02-01
830035
An empirical method which is based principally on estimates of the fatigue crack initiation life (NI) has been developed which predicts the fatigue resistance of tensile-shear spot welds in the long life regime. The method uses Basquin’s law and Peterson’s equation to estimate NI and thus is founded on the fatigue behavior of smooth specimens and modelling of the fatigue notch size effect. The fatigue notch factor (Kf) required in this analysis was obtained from Pook’s relationships for the stress intensity factors of tensile-shear spot welds. Estimates of NI are added to estimates of the fatigue crack propagation life NP to obtain the total fatigue life (NT) but in the long life regime NP can usually be neglected. The improvement of tensile-shear spot weld fatigue resistance through manipulation of geometry and material property variables are discussed with the aid of the model.
Technical Paper

A Fatigue Life Prediction Method for Tensile-Shear Spot Welds

1985-02-01
850370
An empirical Three Stage Initiation-Propagation (TSIP) model has been developed which predicts the fatigue resistance of tensile-shear spot welds under constant amplitude loading. The improvements of tensile-shear spot weld fatigue resistance caused by changes in weld geometry, residual stresses and material properties variables are discussed with the aid of the model. The TSIP model suggests that, in addition to the influence of geometry, residual stresses at the site of crack initiation greatly influence the fatigue resistance of tensile-shear spot welds. The TSIP model predicts that material properties play a subtle role in determining the fatigue resistance of tensile-shear spot welds.
X