Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Software Reliability Growth Modeling: Comparison between Non-Linear- Regression Estimation and Maximum-Likelihood-Estimator Procedures

2018-09-10
2018-01-1772
Automotive software complexity has been growing rapidly with time. The demand for automation in automotive segment including autonomous automobiles and software based products has caught the attention of researchers. Hence, it is necessary to check the complexity of automotive software and their reliability growth. Testing in the field of software artifact is resource intensive exercise. If project managers are able to put forward testing activities well then the testing resource consumptions may be much more resource/cost efficient. Reliability can be estimated during testing phase of software using software reliability growth models (SRGMs). A software package Computer Aided Software Reliability Estimation (CASRE) has many important SRGMs. These SRGMs are based on Non-Homogeneous Poisson Process (NHPP), Markov process or Bayesian models.
Technical Paper

Modeling Stochastic Performance and Random Failure

2007-07-09
2007-01-3027
High costs and extreme risks prevent the life testing of NASA hardware. These unavoidable limitations prevent the determination of sound reliability bounds for NASA hardware; thus the true risk assumed in future missions is unclear. A simulation infrastructure for determining these risks is developed in a configurable format here. Positive preliminary results in preparation for validation testing are reported. A stochastic filter simulates non-deterministic output from the various unit processes. A maintenance and repair module has been implemented with several levels of complexity. Two life testing approaches have been proposed for use in future model validation.
Technical Paper

Mechanical Reliability Calculations Using the Design-Point Methods

1987-04-01
870791
Techniques developed for structural reliability analysis are applied to mechanical reliability problems, including those with non-normal random variables, complicated design equations, chain and ductile system structures, and screening or testing of components.
Technical Paper

Machinability of MADI™

2005-04-11
2005-01-1684
High strength materials have desirable mechanical properties but often cannot be machined economically, which results in unacceptably high finished component cost. MADI™ (machinable austempered ductile iron) overcomes this difficultly and provides the highly desirable combination of high strength, excellent low temperature toughness, good machinability and attractive finished component cost. The Machine Tool Systems Research Laboratory at the University of Illinois at Urbana-Champaign performed extensive machinability testing and determined the appropriate tools, speeds and feeds for milling and drilling (https://netfiles.uiuc.edu/malkewcz/www/MADI.htm). This paper provides the information necessary for the efficient and economical machining of MADI™ and provides comparative machinability data for common grades of ductile iron (EN-GJS-400-18, 400-15, 450-10, 500-7, 600-3 & 700-2) for comparison.
Technical Paper

High Temperature Cyclic Fatigue Damage Modeling of Alumina

1994-03-01
940251
Cyclic loading is not as damaging as static loading of ceramics at high temperatures. Microcrack growth retardation has been established as a mechanism for increasing the durability of ceramics at high temperatures. A combined experimental and theoretical approach provides a mechanistic understanding of the deformation and failure processes in ceramic materials at high temperatures. Results demonstrate that the high temperature behavior of some ceramic material systems are controlled by the behavior of the grain boundary phase whose response is considerably different under static and cyclic loading.
Technical Paper

Finite Element Approach to Landfill Compaction

1993-04-01
931171
Environmental concerns have obstructed development of new landfill sites making it essential to efficiently use currently available space. Finite element methods are evaluated for predicting densification by compactors with the intent of eventually optimizing vehicle design with respect to compaction. A geometrically non-linear, plane strain, quasistatic analysis is used to capture the effects of a single rigid wheel. Future work will include multiple wheels and successive passes, three-dimensional simulations, and realistic material characterization.
Technical Paper

Analysis of Residual Stresses and Cyclic Deformation for Induction Hardened Components

1995-02-01
950707
Induction hardening of mild steel components often results in significant improvements in the static and cyclic load capability, with comparatively small increases in cost. Members subjected primarily to torsional loading are a relevant subset of the broad range of induction hardened components. Due to the variation of material properties and residual stresses, failures are “initiated” at the traditional geometric locations predicted for homogeneous materials and also at subsurface sites. The introduction of shear based fatigue parameters has necessitated the consideration of the residual stress as a three dimensional quantity, especially when analyzing subsurface failures. Not considering the tensoral nature of the residual stress can lead to serious errors when estimating fatigue life, and for larger magnitude loadings, the residual stress field may relax.
X