Refine Your Search



Search Results

Technical Paper

Using R744 (CO2) to Cool an Up-Armored M1114 HMMWV

The US Army uses a light tactical High-Mobility Multi-Purpose Wheeled Vehicle (HMMWV) which, due to the amount of armor added, requires air conditioning to keep its occupants comfortable. The current system uses R134a in a dual evaporator, remote-mounted condenser, engine-driven compressor system. This vehicle has been adapted to use an environmentally friendly refrigerant (carbon dioxide) to provide performance, efficiency, comfort and logistical benefits to the Army. The unusual thermal heat management issues and the fact that the vehicle is required to operate under extreme ambient conditions have made the project extremely challenging. This paper is a continuation of work presented at the SAE Alternate Refrigerants Symposium held in Phoenix last June [1].
Technical Paper

Transient and Steady State Performance Characteristics of a Two-Wheel-Steer and Four-Wheel-Steer Vehicle Model

Using a three-degree-of-freedom vehicle model (side-slip, yaw and roll degrees of freedom) and a nonlinear, saturating rire model, the behavior of a typical exemplar vehicle (1986 Dodge Lancer Turbo) was simulated. Steady state performance was examined through simulating a skidpad lateral accelerarion maneuver. A lane change maneuver was used to reprcsenr transient performance characteristics. A few simple experiments were conducted wirh rhe exemplar vehicle to establish parameters and verify some performance properties. Results of both steady srare and rransienr simulations showed that four -wheel steer offers lirrle or no demonstrated performance advanrages over two-wheel steer.
Technical Paper

The Effects of Cylinder Head Deformation and Asymmetry on Exhaust Valve Thermo-Mechanical Stresses

A geometrically accurate, three-dimensional finite element model of a Diesel engine exhaust valve and cylinder head assembly has been developed to analyze the effect of cylinder head interactions on exhaust valve stresses. Results indicate that a multi-lobed stress pattern occurs around the exhaust valve head due to cylinder head deformation, stiffness variations, and thermal asymmetry. Consequently, peak valve bending and hoop stresses from the three-dimensional model are 48% and 40% higher, respectively, than for the two-dimensional, axisymmetric model. These results indicate the degree of model complexity required for more accurate analyses of exhaust valve operating stresses.
Technical Paper

The Effect of In-Cylinder Temperature on the Ignition Initiation Location of a Pre-Chamber Generated Hot Turbulent Jet

Ignition location is one of the important factors that affect the thermal efficiency, exhaust emissions and knock sensitivity in premixed-charge ignition engines. However, the ignition initiation locations of pre-chamber generated turbulent jet ignition, which is a promising ignition enhancement method, are not clearly understood due to the complex physics behind it. Motivated by this, the ignition initiation location of a transient turbulent jet in a constant volume combustor is analyzed by the use of computational fluid dynamics (CFD) simulations. In the CFD simulations of this work, commercial codes KIVA-3 V release 2 and an in-house-developed chemical solver with a detailed mechanism for H2/air mixtures are used. Comparisons are performed between simulated and experimental ignition initiation locations, and they agree well with one another. A detailed parametric study of the influence of in-cylinder temperature on the ignition initiation location is also performed.
Technical Paper

Testing Heuristic Tools for Life Support System Analysis

BioSim is a simulation tool which captures many basic life support functions in an integrated simulation. Conventional analyses can not efficiently consider all possible life support system configurations. Heuristic approaches are a possible alternative. In an effort to demonstrate efficacy, a validating experiment was designed to compare the configurational optima discovered by heuristic approaches and an analytical approach. Thus far, it is clear that a genetic algorithm finds reasonable optima, although an improved fitness function is required. Further, despite a tight analytical fit to data, optimization produces disparate results which will require further validation.
Technical Paper

Test Vehicle Steering Systems

In order to test and design vehicle systems it is often necessary to develop prototypes. A vehicle's steering system requires a qualitative analysis since it is difficult to quantify and measure subjective quantities such as the “feel” of a steering system. The virtual prototype system (VPS) provides an effective and flexible way of developing and testing the prototypes for qualitative testing. By creating a computer model of a vehicle's steering system using a dynamic simulation package and linking it to a virtual reality vehicle, a designer can drive the virtual prototype vehicle as if he or she were operating an actual vehicle.
Technical Paper

Software Reliability Growth Modeling: Comparison between Non-Linear- Regression Estimation and Maximum-Likelihood-Estimator Procedures

Automotive software complexity has been growing rapidly with time. The demand for automation in automotive segment including autonomous automobiles and software based products has caught the attention of researchers. Hence, it is necessary to check the complexity of automotive software and their reliability growth. Testing in the field of software artifact is resource intensive exercise. If project managers are able to put forward testing activities well then the testing resource consumptions may be much more resource/cost efficient. Reliability can be estimated during testing phase of software using software reliability growth models (SRGMs). A software package Computer Aided Software Reliability Estimation (CASRE) has many important SRGMs. These SRGMs are based on Non-Homogeneous Poisson Process (NHPP), Markov process or Bayesian models.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

Reconfigurable Control System Design for Future Life Support Systems

A reconfigurable control system is an intelligent control system that detects faults within the system and adjusts its performance automatically to avoid mission failure, save lives, and reduce system maintenance costs. The concept was first successfully demonstrated by NASA between December 1989 and March 1990 on the F-15 flight control system (SRFCS), where software was integrated into the aircraft's digital flight control system to compensate for component loss by reconfiguring the remaining control loop. This was later adopted in the Boeing X-33. Other applications include modular robotics, reconfigurable computing structure, and reconfigurable helicopters. The motivation of this work is to test such control system designs for future long term space missions, more explicitly, the automation of life support systems.
Technical Paper

Real-Time Modeling of Liquid Cooling Networks in Vehicle Thermal Management Systems

This paper describes a ‘toolbox’ for modeling liquid cooling system networks within vehicle thermal management systems. Components which can be represented include pumps, coolant lines, control valves, heat sources and heat sinks, liquid-to-air and liquid-to-refrigerant heat exchangers, and expansion tanks. Network definition is accomplished through a graphical user interface, allowing system architecture to be easily modified. The elements of the toolbox are physically based, so that the models can be applied before hardware is procured. The component library was coded directly into MATLAB / SIMULINK and is intended for control system development, hardware-in-the-loop (HIL) simulation, and as a system emulator for on-board diagnostics and controls purposes. For HIL simulation and on-board diagnostics and controls, it is imperative that the model run in real-time.
Technical Paper

Oversteer/Understeer Characteristics of a Locked Differential

The type of differential used in a vehicle has an important and often-neglected effect on handling performance. This is particularly important in racing applications, such as in IndyCar racing, in which the type of differential chosen depends on the course being raced (superspeedway ovals, short ovals, temporary street courses and permanent road courses). In the present work, we examine the effect of a locked rear differential on oversteer/understeer behavior. Using a linear tire model, it is shown that employing a locked differential adds a constant understeer offset to the steering wheel angle (SWA) -v- lateral acceleration vehicle signature. A computer simulation of steady-state cornering behavior showed that the actual effect is much more complicated, and is strongly influenced by static weight distribution, front/rear roll couple distribution, available traction and the radius of the turn being negotiated.
Technical Paper

Optimization of Inlet Port Design in a Uniflow-Scavenged Engine Using a 3-D Turbulent Flow Code

The finite volume, three-dimensional, turbulent flow code ARIS-3D is applied to the study of the complex flow field through the inlet port and within the cylinder of a uniflow-scavenged engine. The multiblock domain decomposition technique is used to accommodate this complex geometry. In this technique, the domain is decomposed into two blocks, one block being the cylinder and the other being the inlet duct. The effects of inlet duct length, geometric port swirl angle, and number of ports on swirl generating capability are explored. Trade-offs between swirl level and inherent pressure drop can thus be identified, and inlet port design can be optimized.
Technical Paper

Numerical Simulation of Two-Phase Flow in the Second Header of MAC Condenser

Phase separation circuiting have been proved in the past to effectively improve the performance of mobile air conditioning (MAC) condensers. In the vertical second header of the condenser, liquid separates from vapor mainly due to gravity, leaving vapor-rich flow with higher heat transfer coefficient to go into the upper passes. The condenser effectiveness is improved in this way. However, separation is usually not perfect, expressed through the separation efficiency (ηl and ηv). This paper presents the numerical study of phase separation phenomena in the second header. The Euler-Euler method of Computational Fluid Dynamics (CFD) is used. Simulations are conducted for two-phase refrigerant R-134a for MAC application. Inlet mass flow rate is simulated at values of 16 g∙s-1, 20 g∙s-1, and 30 g∙s-1 for 21 inlet microchannel tubes, which is the same 1st-pass tube number as of a real separation condenser. Corresponding mass fluxes are 166 kg∙m-2∙s-1, 207 kg∙m-2∙s-1, and 311 kg∙m-2∙s-1.
Technical Paper

Neural Networks in Engineering Diagnostics

Neural networks are massively parallel computational models for knowledge representation and information processing. The capabilities of neural networks, namely learning, noise tolerance, adaptivity, and parallel structure make them good candidates for application to a wide range of engineering problems including diagnostics problems. The general approach in developing neural network based diagnostic methods is described through a case study. The development of an acoustic wayside train inspection system using neural networks is described. The study is aimed at developing a neural network based method for detection defective wheels from acoustic measurements. The actual signals recorded when a train passes a wayside station are used to develop a neural network based wheel defect detector and to study its performance. Signal averaging and scoring techniques are developed to improve the performance of the constructed neural inspection system.
Technical Paper

Modeling of Spray Vaporization and Air-Fuel Mixing in Gasoline Direct-Injection Engines

A numerical investigation of air-fuel mixing in gasoline direct-injection (GDI) engines is presented in this paper. The primary goal of this study is to demonstrate the importance of fuel representation. In the past studies, fuel has been usually modeled as a single component substance. However, most fuels are mixtures of hydrocarbons with diverse boiling points, resulting in mixture vaporization behavior substantially different from single-component behavior. This study presents a newly developed multicomponent vaporization model, which takes into account important mechanisms such as preferential vaporization, internal circulation, surface regression, and non-ideal behavior in high-pressure environments. A sheet spray atomization model was also used to calculate the disintegration of the liquid sheet and the breakup of the subsequent droplets. The results of a single-component fuel representation and a multicomponent fuel representation were compared.
Technical Paper

Modeling of Quasi-1D Multi-Component Fuel Droplet Vaporization using Discrete Approach with Experimental Validation

An efficient multi-component fuel droplet vaporization model has been developed in this work using discrete approach. The precise modeling of droplet vaporization process is divided into two parts: vapor-phase and liquid-phase sub-models. Temporal evolution of flow inside the droplet is considered to describe the transient behavior introduced by the slow diffusion process. In order to account for the internal circulation motion, surface regression and finite diffusion without actually resolving the spatial governing equations within the liquid phase, a set of ordinary differential equations is applied to describe the evolution of the non-uniform distributions of universal diffusional variables, i.e. temperature and species mass fraction. The differences between the droplet surface and bulk mean states are modeled by constructing a quasi-1D frame; the effect of the internal circulations is taken into consideration by using the effective diffusivity rather than physical diffusivity.
Technical Paper

Modeling of Blow-by in a Small-Bore High-Speed Direct-Injection Optically Accessible Diesel Engine

The blow-by phenomenon is seldom acquainted with diesel engines, but for a small bore HSDI optical diesel engine, the effects are significant. A difference in peak pressure up to 25% can be observed near top-dead-center. To account for the pressure differences, a 0-D crevice flow model with a dynamic ring pack model was incorporated into the KIVA code to determine the amount of blow-by. The ring pack model will take into account the forces acting on the piston rings, the position of the piston rings, and the pressure located at each region of the crevice volume at every time step. The crevice flow model takes into consideration the flow through the circumferential gap, ring gap, and the ring side clearance. As a result, the cylinder mass, trapped mass in the crevice regions, and the blow-by values are known. Validation of the crevice model is accomplished by comparing the in-cylinder motoring pressure trace with the experimental motoring data.
Technical Paper

Modeling of Air Fuel Mixing in a Stratified Gasoline Direct Injection Engine Using Multicomponent Fuel Representation

This paper describes a numerical study on air/fuel preparation process in a direct-injected spark-ignition engine under partial load stratified conditions. The fuel is represented as a mixture of four components with a distillation curve similar to that of actual gasoline, and its vaporization processes are simulated by two recently formulated multicomponent vaporization models for droplet and film, respectively. The models include major mechanisms such as non-ideal behavior in high-pressure environments, preferential vaporization, internal circulation, surface regression, and finite diffusion in the liquid phase. A spray/wall impingement model with the effect of surface roughness is used to represent the interaction between the fuel spray and the solid wall. Computations of single droplet and film on a flat plate were first performed to study the impact of fuel representation and vaporization model on the droplet and film vaporization processes.
Technical Paper

Modeling Stochastic Performance and Random Failure

High costs and extreme risks prevent the life testing of NASA hardware. These unavoidable limitations prevent the determination of sound reliability bounds for NASA hardware; thus the true risk assumed in future missions is unclear. A simulation infrastructure for determining these risks is developed in a configurable format here. Positive preliminary results in preparation for validation testing are reported. A stochastic filter simulates non-deterministic output from the various unit processes. A maintenance and repair module has been implemented with several levels of complexity. Two life testing approaches have been proposed for use in future model validation.
Technical Paper

Model to Predict Hydraulic Pump Requirements for an Off-Road Vehicle

This paper describes and discusses a computer model that can be used to predict the hydraulic pump requirements of an excavator necessary to meet the specified productivity levels for a given set of design conditions. The model predicts the hydraulic cylinder flow rates, pressures, and power necessary to sustain a given work cycle. The study compares the results from a simulation of the excavator with actual test data obtained from a test vehicle taken during a typical work cycle.