Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

The Proper Use of Plane Wave Models for Muffler Design

In many industries, muffler and silencer design is primarily accomplished via trial and error. Prototypes are developed and tested, or numerical simulation (finite or boundary element analysis) is used to assess the performance. While these approaches reliably determine the transmission loss, designers often do not understand why their changes improve or degrade the muffler performance. Analyses are time consuming and models cannot be changed without some effort. The intent of the current work is to demonstrate how plane wave muffler models can be used in industry. It is first demonstrated that plane wave models can reliably determine the transmission loss for complicated mufflers below the cutoff frequency. Some tips for developing dependable plane wave models are summarized. Moreover, it is shown that plane wave models used correctly help designers develop intuition and a better understanding of the effect of their design changes.
Journal Article

Investigation of the Acoustic Performance of After Treatment Devices

Diesel engines produce harmful exhaust emissions and high exhaust noise levels. One way of mitigating both exhaust emissions and noise is via the use of after treatment devices such as Catalytic Converters (CC), Selective Catalytic Reducers (SCR), Diesel Oxidation Catalysts (DOC), and Diesel Particulate Filters (DPF). The objective of this investigation is to characterize and simulate the acoustic performance of different types of filters so that maximum benefit can be achieved. A number of after treatment device configurations for trucks were selected and measured. A measurement campaign was conducted to characterize the two-port transfer matrix of these devices. The simulation was performed using the two-port theory where the two-port models are limited to the plane wave range in the filter cavity.