Refine Your Search

Search Results

Journal Article

Using the Reciprocal Work Identity to Evaluate the Transmission Loss of Mufflers

2013-05-13
2013-01-1888
Transmission loss (TL) is a good performance measure of mufflers since it represents the muffler's inherent capability of sound attenuation. There are several existing numerical methods, which have been widely used to calculate the TL from numerical simulation results, such as the four-pole and three-point methods. In this paper, a new approach is proposed to evaluate the transmission loss based on the reciprocal work identity. The proposed method does not assume plane wave propagation in the inlet and outlet ducts, and more importantly, does not explicitly apply the anechoic termination impedance at the outlet. As a result, it has the potential of extending TL computation above the plane wave cut-off frequency.
Technical Paper

Using Numerical Acoustics to Diagnose Noise Problems

2005-05-16
2005-01-2324
Numerical acoustics has traditionally been relegated to a prediction only role. However, recent work has shown that numerical acoustics techniques can be used to diagnose noise problems. The starting point for these techniques is the acoustic transfer vector (ATV). First of all, ATV's can be used to conduct contribution analyses which can assess which parts of a machine are the predominant noise sources. As an example, the sound power contribution and radiation efficiency from parts of a running diesel engine are presented in this paper. Additionally, ATV's can be used to reliably reconstruct the vibration on a machine surface. This procedure, commonly called inverse numerical acoustics (INA), utilizes measured sound pressures along with ATV's to reconstruct the surface velocity. The procedure is demonstrated on an engine cover for which the reconstructed vibration had excellent agreement with experimental results.
Technical Paper

Using Boundary Element Analysis to Analyze Multi-Component Exhaust Systems

2007-05-15
2007-01-2182
A process for predicting the transmission and insertion losses of multi-component exhaust systems is detailed in this paper. A two-tiered process incorporating boundary element analysis to evaluate multi-component systems is implemented. At the component level, the boundary element method is used to predict the transfer matrix for larger components where plane wave behavior is not expected within the component. The transfer matrix approach is then used to predict insertion loss for built-up systems with interconnecting duct or pipe work. This approach assumes plane wave behavior at the inlet and outlet of each component so it is limited to the low frequency regime. Results are compared with experimental results for HVAC systems.
Journal Article

The Proper Use of Plane Wave Models for Muffler Design

2014-04-01
2014-01-0016
In many industries, muffler and silencer design is primarily accomplished via trial and error. Prototypes are developed and tested, or numerical simulation (finite or boundary element analysis) is used to assess the performance. While these approaches reliably determine the transmission loss, designers often do not understand why their changes improve or degrade the muffler performance. Analyses are time consuming and models cannot be changed without some effort. The intent of the current work is to demonstrate how plane wave muffler models can be used in industry. It is first demonstrated that plane wave models can reliably determine the transmission loss for complicated mufflers below the cutoff frequency. Some tips for developing dependable plane wave models are summarized. Moreover, it is shown that plane wave models used correctly help designers develop intuition and a better understanding of the effect of their design changes.
Journal Article

The Effect of Phase Difference between Inputs on Insertion Loss for a Two-Inlet Muffler

2015-06-15
2015-01-2305
A recently developed superposition approach for determining the insertion loss of a two-inlet muffler is reviewed. To validate the approach, calculated and measured insertion losses are compared for a small engine muffler with two inlets and one outlet. After which, the phasing between the two inputs is varied and the insertion loss is evaluated. Results show that the insertion loss is strongly affected by the phasing between sources at low frequencies while phasing between sources has a lesser impact at high frequencies. At the conclusion of the paper, the theory for applying the superposition approach to transmission loss is reviewed.
Journal Article

The Application of the Vincent Circle to Vibro-Acoustic and Duct Acoustic Problems

2009-05-19
2009-01-2215
Over 30 years ago, A. H. Vincent of Westland Helicopters demonstrated that if a structure is excited harmonically, the response at another position (at a fixed frequency) will trace a circle in the complex plane as a result of a dynamic stiffness modification between two points. As either the real or imaginary part of an introduced dynamic stiffness is varied from minus infinity to plus infinity, the structural or acoustic response on any position will map a circle in the complex plane. This paper reviews the basis for this little known principle for vibro-acoustics problems and illustrates the viability for a cantilevered plate example. The applicability of the method is then considered for strictly acoustic systems like intake and exhaust systems. Specifically, it is shown that the response traces a circle in the complex plane if either the real or imaginary parts of the source or termination impedance are varied from minus to plus infinity.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Journal Article

Simulation of Enclosures Including Attached Duct Work

2013-05-13
2013-01-1958
Partial enclosures are commonly utilized to reduce the radiated noise from equipment. Often, enclosure openings are fitted with silencers or louvers to further reduce the noise emitted. In the past, the boundary element method (BEM) has been applied to predict the insertion loss of the airborne path with good agreement with measurement. However, an alteration at the opening requires a new model and additional computational time. In this paper, a transfer function method is proposed to reduce the time required to assess the effect of modifications to an enclosure. The proposed method requires that the impedance at openings be known. Additionally, transfer functions relating the sound pressure at one opening to the volume velocity at other openings must be measured or determined using simulation. It is assumed that openings are much smaller than an acoustic wavelength. The sound power from each opening is determined from the specific acoustic impedance and sound pressure at the opening.
Technical Paper

Simulation of Airborne Path Attenuation of Partial Enclosures

2011-05-17
2011-01-1720
Partial enclosures are a very common way to reduce noise emissions from machinery. However, partial enclosures exhibit complex acoustic behavior that is difficult to predict. The boundary element method (BEM) was used to model the airborne path of a partial enclosure. Simulation results were compared to measurement with good agreement. Special attention is given to the determination of negative insertion loss. It is demonstrated that the enclosure insertion loss will be negative at the Helmholtz frequencies for the enclosure.
Journal Article

Practical Considerations when using the Two-Load Method to Determine the Transmission Loss of Mufflers and Silencers

2013-05-13
2013-01-1881
The two-load method is commonly used to determine the transmission loss of a muffler or silencer. Several practical measurement considerations are examined in this paper. First of all, conical adapters are sometimes used to transition between impedance tubes and the muffler. It is demonstrated that the effect of adding the adapter can be quite significant at low frequencies especially if the adapter is short in length. The effect of changing the length of the adapter was examined via measurement and plane wave theory. Secondly, the effect of selecting the reference microphone was examined experimentally. It was found that measurements are improved by selecting a downstream reference. Finally, the effect of using different frequency response function estimation algorithms (H1, H2 and Hv) was compared sans flow. This had little effect on the measurement.
Technical Paper

Practical Considerations in Reconstructing the Surface Vibration Using Inverse Numerical Acoustics

2003-05-05
2003-01-1456
This paper explores the use of inverse numerical acoustics to reconstruct the surface vibration of a noise source. Inverse numerical acoustics is mainly used for source identification. This approach uses the measured sound pressure at a set of field points and the Helmholtz integral equation to reconstruct the normal surface velocity. The number of sound pressure measurements is considerably less than the number of surface vibration nodes. A brief guideline on choosing the number and location of the field points to provide an acceptable reproduction of the surface vibration is presented. The effect of adding a few measured velocities to improve the accuracy will also be discussed. Other practical considerations such as the shape of the field point mesh and effect of experimental errors on reconstruction accuracy will be presented. Examples will include a diesel engine and a transmission housing.
Technical Paper

On the Prediction of Sound Radiated By Engine Vibration

1985-11-11
852222
An advanced computational method is presented for calculating the sound radiated by vibrating engine of arbitrary shape. The method is based on the numerical evaluation of the Helmholtz Integral Equation. In particular an isoparametric element formulation is introduced in which both the surface geometry and the acoustic variables on the surface of the vibrating body are represented by second order shape functions within the local coordinate system. The formulation includes the case where the surface may have a non-unique normal (e.g. at edges or corners). A general result for the surface and field velocity potential is derived. Test cases involving spherical geometry are given for a pulsating sphere and for an oscillating sphere in which the analytical solutions are known. Examples for bodies with edges and corners are shown for the problems of radiation from a circular cylinder and from a pulsating cube.
Technical Paper

Numerical Simulation of Diesel Particulate Filters in Exhaust Systems

2011-05-17
2011-01-1559
This paper documents a finite element approach to predict the attenuation of muffler and silencer systems that incorporate diesel particulate filters (DPF). Two finite element models were developed. The first is a micro FEM model, where a subset of channels is modeled and transmission matrices are determined in a manner consistent with prior published work by Allam and Åbom. Flow effects are considered at the inlet and outlet to the DPF as well as viscous effects in the channels themselves. The results are then used in a macro FEM model of the exhaust system where the transmission relationship from the micro-model is used to simulate the DPF. The modeling approach was validated experimentally on an example in which the plane wave cutoff frequency was exceeded in the chambers upstream and downstream to the DPF.
Technical Paper

Numerical Modeling of Internal Helmholtz Resonators Created by Punching Small Holes on a Thin-Walled Tube

2019-06-05
2019-01-1486
Helmholtz resonators are normally an afterthought in the design of mufflers to target a very specific low frequency, usually the fundamental firing frequency of the engine. Due to space limitations in a complex muffler design, a resonator may have to be built by punching a few small holes on a thin-walled tube to create a neck passage into a small, enclosed volume outside the tube. The short neck passage created by punching a few small holes on a thin-walled tube can pose a great challenge in numerical modeling, especially when the boundary element method (BEM) is used. In this paper, a few different BEM modeling approaches are compared to one another and to the finite element method (FEM). These include the multi-domain BEM implemented in a substructure BEM framework, modeling both sides of the thin-walled tube and the details of each small hole using the Helmholtz integral equation and the hypersingular integral equation, and modeling just the mid surface of the thin-walled tube.
Journal Article

Numerical Determination of Transfer Impedance for Perforates

2015-06-15
2015-01-2312
A simplified method to model perforated tubes in mufflers is the equivalent transfer impedance approach. Various empirical formulas that consider the porosity, hole diameter, wall thickness, and flow type have been proposed to date. They normally work very well under the conditions that the formulas are intended for. However, there are situations that the empirical formulas may not be able to cover. In this paper, we propose a simple BEM-based numerical procedure to determine the transfer impedance from a small perforate sample, and then send the transfer impedance to the muffler BEM model for analysis purposes. Numerical results are verified in three test cases.
Technical Paper

Methods for Determining Muffler Transmission Loss in Octave Bands

2016-04-05
2016-01-1317
Insertion loss in one-third or octave bands is widely used in industry to assess the performance of large silencers and mufflers. However, there is no standard procedure for determining the transmission loss in one-third or octave bands using measured data or simulation. In this paper, assuming that the source is broadband, three different approaches to convert the narrowband transmission loss data into one-third and octave bands are investigated. Each method is described in detail. To validate the three different approaches, narrowband transmission loss data of a simple expansion chamber and a large bar silencer is converted into one-third and octave bands, and results obtained from the three approaches are demonstrated to agree well with one another.
Technical Paper

Load Effect on Source Impedance Measurement Accuracy

2009-05-19
2009-01-2041
The source in an intake/exhaust system is commonly modeled as a source strength and impedance combination. Both the strength and impedance are normally measured and measurement accuracy depends on selecting an appropriate acoustic load combination. An incident wave decomposition method is proposed which is based on acoustic wave decomposition concepts instead of an electric circuit analogy providing a more straightforward approach to investigating the effect of acoustic load selection. Based on studying wave reflections in the system, the uncertainty for determining source impedance is estimated.
Journal Article

Investigation of the Acoustic Performance of After Treatment Devices

2011-05-17
2011-01-1562
Diesel engines produce harmful exhaust emissions and high exhaust noise levels. One way of mitigating both exhaust emissions and noise is via the use of after treatment devices such as Catalytic Converters (CC), Selective Catalytic Reducers (SCR), Diesel Oxidation Catalysts (DOC), and Diesel Particulate Filters (DPF). The objective of this investigation is to characterize and simulate the acoustic performance of different types of filters so that maximum benefit can be achieved. A number of after treatment device configurations for trucks were selected and measured. A measurement campaign was conducted to characterize the two-port transfer matrix of these devices. The simulation was performed using the two-port theory where the two-port models are limited to the plane wave range in the filter cavity.
Technical Paper

Identification of AeroAcoustic Noise Sources Using Inverse Boundary Element Method

2005-05-16
2005-01-2497
This paper explores the use of inverse boundary element method to identify aeroacoustic noise sources. In the proposed approach, sound pressure at a few locations out of the flow field is measured, followed by the reconstruction of acoustic particle velocity on the surface where the noise is generated. Using this reconstructed acoustic particle velocity, the acoustic response anywhere in the field, including in the flow field, can be predicted. This approach is advantageous since only a small number of measurement points are needed and can be done outside of the flow field, and a relatively fast computational time. As an example, a prediction of vortex shedding noise from a circular cylinder is presented.
Technical Paper

Exhaust Muffler Design and Analysis Using a Boundary Element Method Based Computer Program

1999-05-17
1999-01-1661
Typical automotive muffler designs contain complex internal components such as extended inlet/outlet tubes, thin baffles with eccentric holes, internal connecting tubes, perforated tubes, perforated baffles, flow plugs and sound-absorbing materials. An accurate performance prediction for highly complicated muffler designs would greatly reduce the effort in fabricating and testing of multiple design iterations for engineers. This paper discusses the use of a component-based computer simulation tool for design and analysis of exhaust mufflers. A comprehensive computer program based on the Direct Mixed-Body Boundary Element Method was developed to predict the transmission loss characteristics of muffler systems. The transmission loss is calculated by an improved four-pole method that does not require solving the boundary element matrix twice at each frequency, and hence, it is a significantly faster approach when compared to the conventional four-pole method.
X