Refine Your Search

Topic

Author

Search Results

Technical Paper

Web-Based Vehicle Performance Simulations Using Microsoft Excel

2001-03-05
2001-01-0335
Although computer models for vehicle and sub-system performance simulations have been developed and used extensively in the past several decades, there is currently a need to enhance the overall availability of these types of tools. Increasing demands on vehicle performance targets have intensified the need to obtain rapid feedback on the effects of vehicle modifications throughout the entire development cycle. At the same time, evolution of the PC and development of Web-based applications have contributed to the availability, accessibility, and user-friendliness of sophisticated computer analysis. Web engineering is an ideal approach in supporting globalization and is a cost-effective design-analysis integration business strategy. There is little doubt that this new approach will have positive impacts on product cost, quality, and development cycle time. This paper will show how Microsoft Excel and the Web can be powerful and effective tools in the development process.
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Abstract Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
Technical Paper

Towards Development of a Methodology to Measure Perception of Quality of Interior Materials

2005-04-11
2005-01-0973
The automotive interior suppliers are challenged to develop materials, that not only perform functionally, but also provide the right combination sensory experience (e.g. visual appeal, tactile feeling) and brand differentiation at very competitive costs. Therefore, the objective of this research presented in this paper is to develop a methodology that can be used to measure customer perception of interior materials and to come up with a unique system for assessing value of different interior materials. The overall methodology involves the application of a number of psychophysical measurement methods (e.g. Semantic Differential Scaling) and statistical methods to assess: 1) overall customer perceived quality of materials, 2) elements (or attributes) of perception, and 3) value of materials from OEM's viewpoint in terms of the measurement of perception of quality divided by a measure of cost.
Technical Paper

Touch Feel and Appearance Characteristics of Automotive Door Armrest Materials

2007-04-16
2007-01-1217
This paper presents results of a five phase study conducted to evaluate touch feel and appearance of door armrest materials. Seven different production door armrests with different material characteristics such as softness, smoothness, compressibility, texture, etc. were evaluated. In the first phase, the subjects seated in a vehicle buck in their preferred seating position with the armrests adjusted at their preferred heights, provided ratings on a number of touch feel and appearance of the door armrest materials using 5-point semantic differential scales. In the second phase, the armrests were presented to each subject in all possible pairs and they were asked to select preferred armrest material in each pair.
Technical Paper

The Multiobjective Optimal Design Problems and their Pareto Optimal Fronts for Li-Ion Battery Cells

2016-04-05
2016-01-1199
Abstract This paper begins with a baseline multi-objective optimization problem for the lithium-ion battery cell. Maximizing the energy per unit separator area and minimizing the mass per unit separator area are considered as the objectives when the thickness and the porosity of the positive electrode are chosen as design variables in the baseline problem. By employing a reaction zone model of a Graphite/Iron Phosphate Lithium-ion Cell and the Genetic Algorithm, it is shown the shape of the Pareto optimal front for the formulated optimization takes a convex form. The identified shape of the Pareto optimal front is expected to guide Design of Experiments (DOE) and product design. Compared with the conventional studies whose optimizations are based on a single objective of maximizing the specific energy, the proposed multi-objective optimization approach offers more flexibility to the product designers when trade-off between conflicting objectives is required.
Technical Paper

The Electric Drive of a Tram with an Average Floor

2008-06-23
2008-01-1828
The urban trams with a low floor are more convenient for the passengers, and with a high floor - more cheaply and more technologically during manufacturing and operation. The combined advantages those and others in themselves are trams with average height of a floor, but for this purpose it is necessary to lower height of tram carriages, that is reached by application of electric motors with a small stator external diameter. It is offered in this the perspective electric drive on the base of the synchronous motor with independent excitation. The salient rotor poles of the motor do not contain windings. The motors stator is carried out on the base of the stator body of regular AC electric motor. The multiphase winding is located in the stator. A winding section, which conductors settle down above the between rotor poles, carry out a role of the excitation winding, and others, which conductors lay above poles, - a role of the armature winding.
Technical Paper

The Application of Middleware to In-Vehicle Applications

2002-03-04
2002-01-0264
With the increasing presence of the Internet in today's applications, ranging from legacy enterprise systems to handheld devices and home appliances, there is an increasing need for a generic middleware that can enable the interoperability between heterogeneous systems. In the specific case of in-vehicle networks, a generic middleware would enable the vehicle/driver to interact with a diversity of applications, including legacy enterprise systems, other embedded systems and wireless ad-hoc and ubiquitous applications. This paper is the result of an initial investigation into the requirements for such a middleware, and possible directions to be taken for its implementation.
Technical Paper

Synchronous Motor with Silicon Steel Salient Poles Rotor and All Coils Placed on the Stator

2017-03-28
2017-01-1606
Abstract In this paper, we consider a new design of synchronous motor with salient poles rotor and all coils placed on the stator. This design, uses a laminated silicon steel rotor, which is not so expensive as a rotor with super strong permanent magnets. This design of machine eliminates copper rings on the rotor and brushes which is used in regular synchronous motors, and eliminates disadvantages involved with these arrangements. In an earlier publication, authors considered the opportunity realization of synchronous mode operation in the machine with salient pole rotor and DC stator excitation. Now, we consider the new synchronous mode operation with individual DC excitation of each the alternative current (AC) windings for realization the first, second and third phase synchronous machines. In theoretical basics of analyses and design of synchronous motors we pay more attention to the single-phase motor because it is the basis for design polyphase synchronous machines.
Technical Paper

Sybil Attacks on Vehicular Ad-Hoc Networks

2008-04-14
2008-01-0770
Security is a huge concern in VANETs (Vehicular Ad hoc NETworks) since the information being conveyed may affect life-or-death decisions. One of the security concerns is the Sybil Attack. This attack attempts to create multiple identities to disrupt or control the network. A malicious node utilizing the Sybil Attack in VANETs can disrupt the network in various ways. It can create a large number of Sybil nodes to intervene in message forwarding, potentially causing a massive pileup and great loss of life. A malicious node can also use the Sybil Attack to create illusions of traffic congestions, getting other drivers to take alternate routes and leaving a clear path for the malicious node to its destination. In this paper, we discuss several defense strategies for the Sybil Attack in VANETs.
Technical Paper

Strategic Investment Analysis for Manufacturing Waste Management

1993-03-01
930700
This paper elucidates the major issues complicating strategic investment decisions in manufacturing waste systems. The analytic hierarchy process (AHP), an innovative approach in decision theory, is applied to these decisions in a manufacturing plant at General Motors Corporation. When compared with capital budgeting models, AHP is found to offer a superior approach due to its comprehensive mechanism, a feature urgently needed to handle the increasing legal, economic and technological complexities of manufacturing wastes.
Technical Paper

Spray Angle and Atomization in Diesel Sprays

1984-08-01
841055
In this investigation, cone angles of high pressure diesel sprays emerging through plain orifices were studied. The study was conducted at constant fuel pressures by using injection system in a single pulse mode. The results show cone angles to depend on orifice dimensions, background gas density as well as on injection pressure. Droplet sizes in the mixing region of the spray were also measured at a background gas density of one atmosphere. Sauter mean diameter was found to depend on orifice diameter and injection pressure. Based on the experimental results, a correlation is derived to predict mean diameter in the mixing region.
Technical Paper

Spot Friction Welding of Mg-Mg, Al-Al and Mg-Al Alloys

2008-04-14
2008-01-0144
Spot friction welding is considered a cost-effective method for joining lightweight automotive alloys, such as magnesium and aluminum alloys. An experimental study was conducted to investigate the strength of spot friction welded joints of magnesium to magnesium, aluminum to aluminum, magnesium to aluminum and aluminum to magnesium. The joint structures and failure modes were also studied.
Technical Paper

Simulating an Integrated Business Environment that Supports Systems Integration

2010-10-19
2010-01-2305
This paper describes the design and application of a business simulation to help train employees about the new business model and culture that for an automotive supplier company that designs connected vehicle and other advanced electronic products for the automotive industry. The simulation, called SIM-i-TRI, is a three to four day collaborative learning activity that simulates the executive, administrative, engineering, manufacturing, and marketing functions in three divisions of a manufacturer that supplies parts and systems to customers in industries similar to the automotive industry. It was originally designed to support the new employee orientation at the Tier 1 supplier and to provide the participants a safe environment to practice the lessons from the orientation. The simulation has been used several times a month in the US, England, and Germany for over four years.
Technical Paper

Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles

2017-03-28
2017-01-1660
Abstract Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection.
Technical Paper

Seat Comfort as a Function of Occupant Characteristics and Pressure Measurements at the Occupant-Seat Interface

2012-04-16
2012-01-0071
Seat comfort is a highly subjective attribute and depends on a wide range of factors, but the successful prediction of seat comfort from a group of relevant variables can hold the promise of eliminating the need for time-consuming subjective evaluations during the early stages of seat cushion selection and development. This research presents the subjective seat comfort data of a group of 30 participants using a controlled range of seat foam samples, and attempts to correlate this attribute with a) the anthropometric and demographic characteristics of the participants, b) the objective pressure distribution at the body-seat interface and c) properties of the various foam samples that were used for the test.
Technical Paper

Relationship Between the Corner Depth and Quality of Mixing in a Square Combustion Chamber Di Diesel Engine

2000-06-12
2000-05-0041
This paper provides an insight into the design of a compound combustion chamber, with square and circular cavities, for use in a direct-injection diesel engine. Automotive diesel engines using square combustion chamber design have shown improvement in oxides of nitrogen and particulate exhaust emissions. In spite of this, neither the quality of mixture formation in such chambers nor the relationship between the engine performance and combustion chamber designs have been adequately addressed. Compound combustion chambers have potential to combine attributes of square and circular chambers to provide improved engine performance. An experimental study, based on liquid injection technique (LIT), was conducted to evaluate mixture formation in compound combustion chambers of different designs. These chambers have square geometry of depth "h" at the top and a curricular cavity at the bottom, with the total chamber depth being "H."
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Prediction of Limit Strains in Sheet Metal Forming Under Complex Strain History

2000-03-06
2000-01-0776
In this paper, a predictive method is developed to determine the forming limit strain and fracture limit strain in a stamped automotive component subjected to a complex strain history that would be experienced during an actual forming operation. The method of analysis is based on a damage mechanics model developed recently by the authors and extended to take into account the hysteretic effects of the principal strain and damage planes. The forming limit and fracture limit strains are then predicted using the modified damage model. Satisfactory predictions have been achieved for a practical case where the complex strain history is prescribed based an actual stamping operation.
Technical Paper

Prediction of Forming Limit Diagram with Damage Analysis

1996-02-01
960598
Abstract Based on the theory of damage mechanics, an orthotropic damage model for the prediction of forming limit diagram (FLD) is developed. The conventional method of FLD used to predict localized necking adopts two fundamentally different approaches. Under biaxial loading, the Hill's plasticity method is often chosen when α (= ε2/ε1) < 0. On the other hand, the M-K method is adopted for the prediction of localized necking when α > 0 or the biaxial stretching of sheet metal is pronounced. The M-K method however suffers from the arbitrary selection of the imperfection size, thus resulting in inconsistent predictions. The orthotropic damage model developed for predicting the FLD is based on the anisotropic damage model recently proposed by Chow et al (1993). The model is extended to take into account, during the sheet forming process, orthotropic plasticity and damage. The orthotropic FLD model consists of the constitutive equations of elasticity and plasticity coupled with damage.
Technical Paper

Prediction and Experimental Validation of Path-Dependent Forming Limit Diagrams of VDIF Steel

1998-02-23
980079
Strains in most stamped parts are produced under non-proportional loading. Limit strains induced during forming are, therefore, path dependent. Experimental Forming Limit Diagrams (FLDs) are usually determined under proportional loading and are not applicable to most forming operations. Experimental results have shown that path dependent FLDs are different from those determined under proportional loading. A number of analytical methods have been used to predict FLDs under proportional loading. The authors have recently introduced a new method for predicting FLDs based on the theory of damage mechanics. The damage model was used successfully to predict proportional FLDs for VDIF steel and Al6111-T4. In this paper, the anisotropic damage model was used to predict non-proportional FLDs for VDIF steel. Experiments were conducted to validate model predictions by applying pre-stretch in plane strain followed by uniaxial and balanced biaxial tension.
X