Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Journal Article

The Effects of Cylinder Deactivation on the Thermal Behaviour and Performance of a Three Cylinder Spark Ignition Engine

2016-10-17
2016-01-2160
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

Morphological Characterization of Gasoline Soot-in-Oil: Development of Semi-Automated 2D-TEM and Comparison with Novel High-Throughput 3D-TEM

2019-09-09
2019-24-0042
Characterization of soot nanoparticle morphology can be used to develop understanding of nanoparticle interaction with engine lubricant oil and its additives. It can be used to help direct modelling of soot-induced thickening, and in a more general sense for combatting reductions in engine efficiency that occur with soot-laden oils. Traditional 2D transmission electron microscopy (TEM) characterization possesses several important shortcomings related to accuracy that have prompted development of an alternative 3D characterization technique utilizing electron tomography, known as 3D-TEM. This work details progress made towards facilitating semi-automated image acquisition and processing for location of structures of interest on the TEM grid. Samples were taken from a four cylinder 1.4 L gasoline turbocharged direct injection (GTDI) engine operated in typically extra-urban driving conditions for 20,284 km, with automatic cylinder deactivation enabled.
Technical Paper

Fuel Transport Characteristics of Spark Ignition Engines for Transient Fuel Compensation

1995-02-01
950067
The fuel transfer characteristics of the intake port of a fuel-injected spark ignition engine have been determined for engine warm-up conditions following cold starts at temperature down to -30°C and extending to fully-warm states, using a method based upon perturbing fuel injection rate and recording AFR response. The variation of τ and x parameters over a range of temperatures, engine speeds, AFR, and engine loads has been evaluated. Temperature and speed have greatest influence, AFR and load effects are small. Application of the data to define transient fuel compensation requirements has been examined.
Technical Paper

Fuel Film Evaporation and Heat Transfer in the Intake Port of an S.I. Engine

1996-05-01
961120
Surface heat transfer measurements have been taken in the intake port of a single cylinder four valve SI engine running on isooctane fuel. The objective has been to establish how fuel characteristics affect trends in surface heat transfer rates for a range of engine operating conditions. The heat transfer measurements were made using heat flux gauges bonded to the intake port surface in the region where highest rates of fuel deposition occur. The influence on heat transfer rates of the deposited fuel and its subsequent behaviour has been examined by comparing fuel-wetted and dry-surface heat transfer measurements. Heat transfer changes are consistent with trends predicted by convective mass transfer over much of the range of surface temperatures from 20°C to 100°C. Towards the upper temperature limit heat transfer reaches a maximum limited by the rate and distribution of fuel deposition.
Technical Paper

Correlation of Engine Heat Transfer for Heat Rejection and Warm-Up Modelling

1997-05-19
971851
A correlation for total gas-side heat transfer rate has been derived from the analysis of engine data for measured heat rejection rate, frictional dissipation, and published data on exhaust port heat transfer. The correlation is related to the form developed by Taylor and Toong, and the analysis draws on this. However, cylinder and exhaust port contributions are separated. Two empirical constants are fixed to best match predicted to measured results for heat rejection to coolant and oil cooler under steady-state conditions, and also for exhaust port heat transfer rates. The separated contributions also defined a correlation for exhaust port heat transfer rate. The description of gas-side heat transfer is suited to needs for the analysis of global thermal behaviour of engines.
Technical Paper

Characterisation of DISI Emissions and Fuel Economy in Homogeneous and Stratified Charge Modes of Operation

2001-09-24
2001-01-3671
An experimental study of the performance of a reverse tumble, DISI engine is reported. Specific fuel consumption and engine-out emissions have been investigated for both homogeneous and stratified modes of fuel injection. Trends in performance with varying AFR, EGR, spark and injection timings have been explored. It is shown that neural networks can be trained to describe these trends accurately for even the most complex case of stratified charge operation with exhaust gas recirculation.
Technical Paper

Audit of Fuel Utilisation During the Warm-Up of SI Engines

1997-05-01
971656
Experimental studies of fuel utilisation during the early stages of engine warm-up after cold-starts are reported. The investigation has been carried out on a 1.81, 4 cylinder spark-ignition engine with port electronic fuel injection. The relationship between fuel supplied and fuel accounted for by the analysis of exhaust gas composition shows that a significant mass of fuel supplied is temporarily stored or permanently lost. An interpretation of data is made which allows time-dependent variations of these to be separately resolved and estimates of fuel quantities made. The data covers a range of cold-start conditions down to -5°C at which, on a per cylinder basis, fuel stored peaks typically at around 0.75g and a total of 1g is returned over 100 seconds of engine running. Fuel lost past the piston typically accounts for 2g over 200 to 300 seconds of running.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

2012-04-16
2012-01-1328
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
X