Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Technical Paper

Towards Self-Adaptive Fixturing Systems for Aircraft Wing Assembly

The aim of this work was to develop a new assembly process in conjunction with an adaptive fixturing system to improve the assembly process capability of specific aircraft wing assembly processes. The inherently complex aerospace industry requires a step change in its capability to achieve the production ramp up required to meet the global demand. This paper evaluates the capability of adaptive fixtures to identify their suitability for implementation into aircraft wing manufacturing and assembly. To understand the potential benefits of these fixtures, an examination of the current academic practices and an evaluation of the existing industrial solutions is highlighted. The proposed adaptive assembly process was developed to account for the manufacturing induced dimensional variation that causes significant issues in aircraft wing assembly. To test the effectiveness of the adaptive assembly process, an aircraft wing assembly operation was replicated on a demonstrator test rig.
Technical Paper

The Use of Vehicle Drive Cycles to Assess Spark Plug Fouling Performance

Spark plug fouling is a common problem when vehicles are repeatedly operated for very short periods, particularly at low temperatures. This paper describes a test procedure which uses a series of short, high-load drive cycles to assess plug fouling under realistic conditions. The engine is force cooled between drive cycles in order to increase test throughput. Spark plug resistance is shown to be a poor indicator of the effect of fouling on engine performance and the rate of misfiring is given as an alternative measure. An automated technique to detect misfires from engine speed data is described. This has been used to investigate the effect of spark plug type, fuelling level and spark timing on fouling. Spark plugs which are designed to run hotter are found to be more resistant to plug fouling. Isolated adjustments to fuelling level and spark timing calibrations within the range providing acceptable performance have a weak effect on susceptibility to plug fouling.
Technical Paper

The Build-Up of Oil Dilution by Gasoline and the Influence of Vehicle Usage Pattern

The dilution of lubricating oil by fuel has adverse effects on engine wear, oil lubricity, air/fuel ratio control and feedgas emissions. Dilution is one of the factors limiting oil change intervals. The level and rate of accumulation depend on engine operating conditions and patterns of vehicle use. The work reported here develops and evaluates an empirical model to predict accumulation characteristics. This is aligned to requirements for predictions of dilution build-up in service. Predictions are shown to be in good agreement with data given in the literature. The model is used to investigate the influence of patterns of vehicle use on dilution.
Journal Article

Technology Review of Thermal Forming Techniques for use in Composite Component Manufacture

There is a growing demand for composites to be utilised in the production of large-scale components within the aerospace industry. In particular the demand to increase production rates indicates that traditional manual methods are no longer sufficient, and automated solutions must be sought. This typically leads to automated forming processes where there are a limited number of effective options. The need for forming typically arises from the inability of layup methods to produce complex geometries of structural components. This paper reviews the current state of the art in automated forming processes, their limitations and variables that affect performance in the production of large scale components. In particular the paper will focus on the application of force and heat within secondary forming processes. It will then review the effects of these variables against the structure of the required composite component and identify viability of the technology.
Journal Article

Structural Quality Inspection Based on a RGB-D Sensor: Supporting Manual-to-Automated Assembly Operations

The assembly and manufacture of aerospace structures, in particular legacy products, relies in many cases on the skill, or rather the craftsmanship, of a human operator. Compounded by low volume rates, the implementation of a fully automated production facility may not be cost effective. A more efficient solution may be a mixture of both manual and automated operations but herein lies an issue of human error when stepping through the build from a manual operation to an automated one. Hence the requirement for an advanced automated assembly system to contain functionality for inline structural quality checking. Machine vision, used most extensively in manufacturing, is an obvious choice, but existing solutions tend to be application specific with a closed software development architecture.
Technical Paper

Review of Reconfigurable Assembly Systems Technologies for Cost Effective Wing Structure Assembly

Airbus commercial wings are assembled manually in dedicated steel structures. The lead time to design, manufacture and commission these fixtures is often in excess of 24 months. Due to the nature of these fixtures, manufacturing is slow in responding to changes in demand. There is underused capacity in some areas and insufficient ramp-up speed where increased production rate is needed. Reconfigurable Manufacturing Systems and Reconfigurable Assembly Systems (RAS) provide an approach to system design that provides appropriate capacity when needed. The aim of the paper is to review RAS technologies that are suitable for cost-effective wing structure assembly and what knowledge gaps exist for a RAS to be achieved. The paper examines successful cases of RAS and reviews relevant system design approaches. Cost savings are acknowledged and tabularised where demonstrated in research. The research gaps to realising a RAS for wing assembly are identified and different approaches are considered.
Journal Article

Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study

Current assembly systems that deal with large, complex structures present a number of challenges with regard to improving operational performance. Specifically, aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways, resulting in a deeply complex process that requires a multi-disciplined team of engineers. The current approach to ramp-up production rate involves building additional main assembly fixtures which require large investment and lead times up to 24 months. Within Airbus Operations Ltd there is a requirement to improve the capacity and flexibility of assembly systems, thereby reducing non-recurring costs and time-to-market. Recent trends to improve manufacturing agility advocate Reconfigurable Assembly Systems (RAS) as a viable solution. Yet, adding reconfigurability to assembly systems further increases both the operational and design complexity.
Journal Article

Implementing Determinate Assembly for the Leading Edge Sub-Assembly of Aircraft Wing Manufacture

The replacement for the current single-aisle aircraft will need to be manufactured at a rate significantly higher that of current production. One way that production rate can be increased is by reducing the processing time for assembly operations. This paper presents research that was applied to the build philosophy of the leading edge of a laminar flow European wing demonstrator. The paper describes the implementation of determinate assembly for the rib to bracket assembly interface. By optimising the diametric and the positional tolerances of the holes on the two bracket types and ribs, determinate assembly was successfully implemented. The bracket to rib interface is now secured with no tooling or post processes other than inserting and tightening the fastener. This will reduce the tooling costs and eliminates the need for local drilling, de-burring and re-assembly of the bracket to rib interface, reducing the cycle time of the operation.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Technical Paper

Demonstration of Transformable Manufacturing Systems through the Evolvable Assembly Systems Project

Evolvable Assembly Systems is a five year UK research council funded project into flexible and reconfigurable manufacturing systems. The principal goal of the research programme has been to define and validate the vision and support architecture, theoretical models, methods and algorithms for Evolvable Assembly Systems as a new platform for open, adaptable, context-aware and cost effective production. The project is now coming to a close; the concepts developed during the project have been implemented on a variety of demonstrators across a number of manufacturing domains including automotive and aerospace assembly. This paper will show the progression of demonstrators and applications as they increase in complexity, specifically focussing on the Future Automated Aerospace Assembly Phase 1 technology demonstrator (FA3D).