Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Snake-Arm Robots: A New Approach to Aircraft Assembly

2007-09-17
2007-01-3870
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robots to conduct assembly tasks within wing boxes - an area currently inaccessible for automation. The composite, single skin construction of aircraft structures presents new assembly challenges. Currently during box close-out it is necessary for aircraft fitters to climb into the wing box through small access panels and use manual or power tools to perform a variety of tasks. In future wing designs it may be that certain parts of the wing do not provide adequate access for manual assembly methods. It is also known that these manual interventions introduce health and safety concerns with their associated costs. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. Such a development has broader implications for aircraft design and assembly.
Technical Paper

Snake-Arm Robots: A New Approach to Aircraft Assembly

2006-09-12
2006-01-3141
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robot technology suitable for conducting automated inspection and assembly tasks within wing boxes. The composite, single skin construction of aircraft structures presents new challenges for robotic assembly. During box close-out it is necessary for aircraft fitters to climb into the wing box through a small access panel and use manual or power tools to perform a variety of tasks. These manual interventions give rise to a number of health and safety concerns. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. The advantages of automating in-wing processes will be discussed. This paper presents early stage results of the demonstration snake-arm robot and outlines expectations for future development.
Technical Paper

Sideways Collar Anvil For Use on A340-600

2005-10-03
2005-01-3300
A new method of installing LGP collars onto titanium lock bolts has been brought into production in the Airbus wing manufacturing facility in Broughton, Wales. The feed system involves transporting the collar down a rectangular cross-sectioned hose, through a rectangular pathway in the machine clamp anvil to the swage die without the use of fingers or grippers. This method allows the reliable feeding the collars without needing to adjust the position of feed fingers or grippers relative to the tool centerline. Also, more than one fastener diameter can be fed through one anvil geometry, requiring only a die change to switch between certain fastener diameters. In our application, offset and straight stringer geometries are accommodated by the same anvil.
Technical Paper

Modular and Configurable Steel Structure for Assembly Fixtures

2010-09-28
2010-01-1873
This paper will present the latest development of a configurable and modular steel construction system for use in frameworks of flexible fixtures of the kind called Affordable Reconfigurable Fixtures (ART). Instead of a dedicated aircraft fixture, which is very time consuming and expensive, the ART fixtures enable affordable construction from a standard component kit, by solving the main drawbacks of traditional tooling. In early 2009 Airbus UK built the first steel modular fixture for the aerospace industry. The project was a partnership with DELFOi and Linköping University in a project called ReFlex, Reconfigurable Flexible Tooling. A paper was presented in the last year SAE conference which explained about the project in overall. The construction system called BoxJoint has recently been tested in some manufacturing areas at Airbus UK and also been applied in the production at Saab Aerospace Linköping Sweden.
Journal Article

Improvement of Planning and Tracking of Technology Maturity Development with Focus on Manufacturing Requirements

2013-09-17
2013-01-2261
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

2013-09-17
2013-01-2134
Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Technical Paper

Drilling Cost Model

2002-09-30
2002-01-2632
The paper describes a way of generating a cost model, which is aimed to compare different drilling processes. The development of this tool is a part of an ongoing European Union funded aircraft industry project called ADFAST (Automation for Drilling, Fastening, Assembly, Systems Integration, and Tooling). This part of the project involves 4 industrial partners, (Alenia, Airbus Espana SL, Airbus UK and Saab AB), 1 equipment developer (Novator AB) and 1 academic institute (Linkoping University). The model has been created to enable the benefits of an advanced system such as orbital drilling to be quantified. The model is able to generate a cycle time and a cost for the whole drilling process involving equipment, consumables and assembly of varied aircraft structures. The challenge of the task was to develop the ability of modeling a process with a sequence of drilling operations that the model user, in an intuitive way, can select and modify.
Journal Article

Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures

2014-06-30
2014-01-2079
Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range.
Technical Paper

Diesel Injector Deposits - An Issue That Has Evolved with Engine Technology

2011-08-30
2011-01-1923
Diesel engines have traditionally been favoured in heavy-duty applications for their fuel economy, robustness, reliability and relative lack of fuel sensitivity. Recently it has seen a growth in its popularity in light duty applications due particularly to its fuel efficiency. However, as the engine technology and particularly the fuel injection equipment has evolved to meet ever stricter emissions legislation the engines have become more sensitive to deposit formation resulting from changes in fuel quality. This paper reviews bouts of concern over diesel fuel injector deposits, possible causes for the phenomenon and test methods designed to screen fuels to eliminate problems.
Technical Paper

Composite Automatic Wing Drilling Equipment (CAWDE)

2006-09-12
2006-01-3162
A custom 5-axis machine tool is constructed to enable fully automated drilling and slave-bolt insertion of composite and metallic wingbox components for a new military transport aircraft. The machine tool can be transported to serve many assembly jigs within the cell. Several features enhance accuracy, capability, and operator safety.
Technical Paper

Automated Wing Drilling System for the A380-GRAWDE

2003-09-08
2003-01-2940
On Airbus aircraft, the undercarriage reinforcing is attached through the lower wing skin using bolts up to 1-inch in diameter through as much as a 4-inch stack up. This operation typically takes place in the wing box assembly jigs. Manual hole drilling for these bolts has traditionally required massive drill templates and large positive feed drill motors. In spite of these large tools, the holes must be drilled in multiple steps to reduce the thrust loads, which adds process time. For the new A380, Airbus UK wanted to explore a more efficient method of drilling these large diameter holes. Introducing automated drilling equipment, which is capable of drilling these holes and still allows for the required manual access within the wing box assembly jig, was a significant challenge. To remain cost effective, the equipment must be flexible and mobile, a llowing it to be used on multiple assemblies.
Technical Paper

An Algorithm for Assembly Centric Design

2002-09-30
2002-01-2634
This paper describes and demonstrates the use of an assembly centric design algorithm as an aid to achieving minimal hard tooling assembly concepts. The algorithm consists of a number of logically ordered design methodologies and also aids the identification of other enabling technologies. Included in the methodologies is an innovative systems analysis tool that enables the comparison of alternative assembly concepts, and the prediction and control of the total assembly error, at the outline stage of the design.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
X