Refine Your Search

Topic

Author

Search Results

Technical Paper

The Use of Vehicle Drive Cycles to Assess Spark Plug Fouling Performance

1994-02-01
940101
Spark plug fouling is a common problem when vehicles are repeatedly operated for very short periods, particularly at low temperatures. This paper describes a test procedure which uses a series of short, high-load drive cycles to assess plug fouling under realistic conditions. The engine is force cooled between drive cycles in order to increase test throughput. Spark plug resistance is shown to be a poor indicator of the effect of fouling on engine performance and the rate of misfiring is given as an alternative measure. An automated technique to detect misfires from engine speed data is described. This has been used to investigate the effect of spark plug type, fuelling level and spark timing on fouling. Spark plugs which are designed to run hotter are found to be more resistant to plug fouling. Isolated adjustments to fuelling level and spark timing calibrations within the range providing acceptable performance have a weak effect on susceptibility to plug fouling.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

2013-04-08
2013-01-1627
An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Journal Article

The Effects of Cylinder Deactivation on the Thermal Behaviour and Performance of a Three Cylinder Spark Ignition Engine

2016-10-17
2016-01-2160
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Technical Paper

The Build-Up of Oil Dilution by Gasoline and the Influence of Vehicle Usage Pattern

2000-10-16
2000-01-2838
The dilution of lubricating oil by fuel has adverse effects on engine wear, oil lubricity, air/fuel ratio control and feedgas emissions. Dilution is one of the factors limiting oil change intervals. The level and rate of accumulation depend on engine operating conditions and patterns of vehicle use. The work reported here develops and evaluates an empirical model to predict accumulation characteristics. This is aligned to requirements for predictions of dilution build-up in service. Predictions are shown to be in good agreement with data given in the literature. The model is used to investigate the influence of patterns of vehicle use on dilution.
Technical Paper

Surrogate Diesel Fuel Models for Low Temperature Combustion

2013-04-08
2013-01-1092
Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
Technical Paper

Stoichiometric Air-Fuel Ratio Control Analysis

1981-02-01
810274
A great deal of current automotive engineering effort involves the development of three-way catalyst-based emission control systems that seek to minimize fuel consumption while simultaneously meeting stringent exhaust emission standards. Mitigation of emissions is enhanced in a three-way catalyst system when the system air-fuel ratio (A/F) is in proximity to ideal burning or stoichiometry. This paper is concerned with extending methods used for determining engine calibrations to closed-loop systems with three-way catalysts. The paper presents a simulation model that employs experimentally obtained data to characterize the A/F control loop.
Technical Paper

Renewable Ethanol Use for Enabling High Load Clean Combustion in a Diesel Engine

2013-04-08
2013-01-0904
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
Technical Paper

Recent Developments in Penetration Resistance of Windshield Glass

1965-02-01
650474
A twofold improvement in penetration resistance of laminated safety glass for use in vehicle windshields has been achieved. A new test procedure has been established which will provide better correlation of test conditions to accident conditions than present tests do. Present windshield material and the new safety glazings are compared.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

Natural and Environmentally Responsive Building Envelopes

2007-07-09
2007-01-3056
In a context of global warming and our needs to reduce CO2 emissions, building envelopes will play an important role. A new imperative has been put forth to architects and engineers to develop innovative materials, components and systems, in order to make building envelopes adaptive and responsive to variable and extreme climate conditions. Envelopes serve multiple functions, from shielding the interior environment to collecting, storing and generating energy. Perhaps a more recent concern of terrestrial habitats is permeability and leakages within the building envelope. Such air tight and concealed envelopes with zero particle exchange are a necessity and already exist in regard to space capsules and habitats. This paper attempts to acknowledge existing and visionary envelope concepts and their functioning in conjunction with maintaining a favourable interior environment. It introduces several criteria and requirements of advanced façades along with interior pressurization control.
Technical Paper

Morphological Characterization of Gasoline Soot-in-Oil: Development of Semi-Automated 2D-TEM and Comparison with Novel High-Throughput 3D-TEM

2019-09-09
2019-24-0042
Characterization of soot nanoparticle morphology can be used to develop understanding of nanoparticle interaction with engine lubricant oil and its additives. It can be used to help direct modelling of soot-induced thickening, and in a more general sense for combatting reductions in engine efficiency that occur with soot-laden oils. Traditional 2D transmission electron microscopy (TEM) characterization possesses several important shortcomings related to accuracy that have prompted development of an alternative 3D characterization technique utilizing electron tomography, known as 3D-TEM. This work details progress made towards facilitating semi-automated image acquisition and processing for location of structures of interest on the TEM grid. Samples were taken from a four cylinder 1.4 L gasoline turbocharged direct injection (GTDI) engine operated in typically extra-urban driving conditions for 20,284 km, with automatic cylinder deactivation enabled.
Technical Paper

Morphological Characterisation of Diesel Soot in Oil and the Associated Extraction Dependence

2018-04-03
2018-01-0935
The size and morphology of soot particles and agglomerates extracted from lubricating oil drawn from the sump of a diesel engine have been investigated and compared using Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Samples were prepared for electron microscopy imaging by both centrifugation and solvent extraction to investigate the impact of these procedures on the morphological characteristics, such as skeleton length and width and circularity, of the obtained soot. It was shown that centrifugation increases the extent of agglomeration within the sample, with 15% of the agglomerates above 200 nm compared to only 11% in the solvent extracted soot. It was also observed that the width of centrifugation extracted soot was typically 10 nm to 20 nm larger than that of solvent extracted soot, suggesting that centrifugation forces the individual agglomerate chains together.
Technical Paper

Modeling of In-Cylinder Soot Particle Size Evolution and Distribution in a Direct Injection Diesel Engine

2015-04-14
2015-01-1075
The focus of this study is to analyse changes in soot particle size along the predicted pathlines as they pass through different in-cylinder combustion histories obtained from Kiva-3v CFD simulation with a series of Matlab routines. 3500 locations representing soot particles were selected inside the cylinder at 8° CA ATDC as soot was formed in high concentration at this CA. The dominant soot particle size was recorded within the size range of 20-50 nm at earlier CA and shifted to 10-20 nm after 20° CA ATDC. Soot particle quantities reduce sharply until 20° CA ATDC after which they remain steady at around 1500 particles. Soot particles inside the bowl region tend to stick to the bowl walls and those remaining in the bowl experience an increase in size. Soot particles that move to the upper bowl and squish regions were observed to experience a decrease in size.
Technical Paper

Measurement of Sub-23 nm Particulate Emissions from GDI Engines: A Comparison of Processing Methods

2021-04-06
2021-01-0626
Engine research has increasingly focused on emission of sub 23 nm particulates in recent years. Likewise, current legislative efforts are being made for particulate number (PN) emission limits to include this previously omitted size range. In Europe, PN measurement equipment and procedures for regulatory purposes are defined by the particle measurement programme (PMP). Latest regulation drafts for sub 23 nm measurements specify counting efficiencies with a 65% cut-off size at 10 nm (d65) and a minimum of 90% above 15 nm (d90). Even though alternative instruments, such as differential mobility spectrometers (DMS), are widely used in laboratory environments, the interpretation of their sub 23 nm measurements has not yet been widely discussed. For this study, particulate emissions of a 1.0L gasoline direct injection (GDI) engine have been measured with a DMS system for low to medium speeds with two load steps.
Technical Paper

Investigating the Effect of Carbon Nanoparticles on the Viscosity of Lubricant Oil from Light Duty Automotive Diesel Engines

2014-04-01
2014-01-1481
The influence of size and concentration of carbon nanoparticle on the viscosity of an SAE 5W-30 lubricant oil has been investigated experimentally. Data were collected for oil samples drawn from sump of light duty automotive diesel engines. The average size of soot particles in the used oil samples was in the range of 180-320nm with concentrations ranging from 0 to 2 percentage by weight (wt. %.). A Brookfield DV-II Pro rotary viscometer was used to measure dynamic viscosity at low shear rates and temperatures of 40°C and 90°C. Nanoparticle concentration and particle size distribution were evaluated using Thermo-Gravimetric Analysis (TGA) and Dynamic Light Scattering (DLS) respectively. The viscosity of suspensions of graphite powder in lubricant oil was also investigated for concentrations ranging from 0 to 2 wt. %. The results show that dynamic viscosity increases with increasing soot content and decreasing temperature.
Technical Paper

Information on the Aromatic Structure of Internal Diesel Injector Deposits From Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

2014-04-01
2014-01-1387
The nature of internal diesel injector deposits (IDID) continues to be of importance to the industry, with field problems such as injector sticking, loss of power, increased emissions and fuel consumption being found. The deposits have their origins in the changes in emission regulations that have seen increasingly severe conditions experienced by fuels because of high temperatures and high pressures of modern common rail systems and the introduction of low sulphur fuels. Furthermore, the effect of these deposits is amplified by the tight engineering tolerances of the moving parts of such systems. The nature and thus understanding of such deposits is necessary to both minimising their formation and the development of effective diesel deposit control additives (DCA).
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
X