Refine Your Search

null

Search Results

Viewing 1 to 12 of 12
Technical Paper

Steady and Transient Fluid Dynamic Analysis of the Tumble and Swirl Evolution on a 4V Engine with Independent Intake Valves Actuation

2008-10-06
2008-01-2392
This work aims at analyzing the fluid dynamic characteristics of a Ducati 4 valves SI engine, for racing motorcycle, during the intake and compression strokes, focusing on the correlation between steady state flow test data (experiments and simulations) and transient CFD simulation results, including the effect of variable valve actuation strategies with independent intake valve actuation. Several steady state flow test data were available in terms of maps of the discharge, tumble and swirl coefficients, at any combination of asymmetric lifts of the two intake valves. From these steady state data it can be argued that asymmetric strategies could enhance engine full load and part load operation characteristics, by exploiting favourable trade off occurring between the opposing needs for high mass flow rate and high charge motion intensity.
Journal Article

Prediction of the Nozzle Flow and Jet Characteristics at Start and End of Injection: Transient Behaviors

2015-09-01
2015-01-1850
This paper reports investigations on diesel jet transients, accounting for internal nozzle flow and needle motion. The calculations are performed with Large Eddy Simulation (LES) turbulence model by coupling the internal and external multiphase flows simultaneously. Short and multiple injection strategies are commonly used in internal combustion engines. Their features are significantly different from those generally found in steady state conditions, which have been extensively studied in the past, however, these conditions are seldom reached in modern engines. Recent researches have shown that residual gas can be ingested in the injector sac after the end-of-injection (EOI) and undesired dribbles can be produced. Moreover, a new injection event behaves differently at the start-of-injection (SOI) depending on the sac initial condition, and the initial spray development can be affected for the first few tens of μs.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Technical Paper

Flow Characterization of a High Performance S.I. Engine Intake System - Part 1: Experimental Analysis

2003-03-03
2003-01-0623
In this work an experimental analysis is performed to evaluate the influence of different flow bench test conditions and system configurations on the flow characteristics in the intake system of a high performance 4-valve, SI Internal Combustion Engine: valve lift, test pressure drop, throttle valve aperture, throttle valve opening direction in respect to the intake system layout (i.e. clockwise/counterclockwise), presence of the tumble adaptor. To this aim, experimental tests are performed on a Ducati Corse racing engine cylinder head, by measuring the discharge coefficient and the tumble coefficient. The several experimental data obtained by combining the different operational and geometrical parameters are analysed and discussed.
Technical Paper

Experimental and Numerical Study of an Electro-Hydraulic Camless VVA System

2008-04-14
2008-01-1355
This paper presents the current research activity about an electro-hydraulic camless valve actuation system for internal combustion engines. From a general point of view, this system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. In the HVC system, the valve actuation timing and duration are controlled by varying the driving signal of the pilot stage, which is governed by a solenoid, fast-acting, three-way valve; the valve lift is adjusted by varying the oil pressure of the power stage. This system uses hydraulic forces to open the engine valve while a mechanical spring is used for its closure. The HVC key element is a spool valve, which operates as a three way / three position valve. This element is designed in order to ensure the synchronization of its own motion with that of the poppet valve mass-spring system.
Journal Article

Experimental and Numerical Evaluation of Diesel Spray Momentum Flux

2009-11-02
2009-01-2772
In the present work, an experimental and numerical analysis of high pressure Diesel spray evolution is carried out in terms of spray momentum flux time history and instantaneous injection rate. The final goal of spray momentum and of injection rate analyses is the evaluation of the nozzle outlet flow characteristics and of the nozzle internal geometry possible influences on cavitation phenomena, which are of primary importance for the spray evolution. Further, the evaluation of the flow characteristics at the nozzle exit is fundamental in order to obtain reliable boundary conditions for injection process 3D simulation. In this paper, spray momentum data obtained in ambient temperature, high counter-pressure conditions at the Perugia University Spray Laboratory are presented and compared with the results of 3D simulations of the momentum rig itself.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Journal Article

Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector

2014-04-01
2014-01-1426
The internal structure of Diesel fuel injectors is known to have a significant impact on the nozzle flow and the resulting spray emerging from each hole. In this paper the three-dimensional transient flow structures inside a Diesel injector is studied under nominal (in-axis) and realistic (including off-axis lateral motion) operating conditions of the needle. Numerical simulations are performed in the commercial CFD code CONVERGE, using a two-phase flow representation based on a mixture model with Volume of Fluid (VOF) method. Moving boundaries are easily handled in the code, which uses a cut-cell Cartesian method for grid generation at run time. First, a grid sensitivity study has been performed and mesh requirements are discussed. Then the results of moving needle calculations are discussed. Realistic radial perturbations (wobbles) of the needle motion have been applied to analyze their impact on the nozzle flow characteristics.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

2013-01-09
2013-26-0047
The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Technical Paper

Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems

2017-03-28
2017-01-0834
An extensive numerical study of two-phase flow inside the nozzle holes and the issuing jets for a multi-hole direct injection gasoline injector is presented. The injector geometry is representative of the Spray G nozzle, an eight-hole counter-bored injector, from the Engine Combustion Network (ECN). Homogeneous Relaxation Model (HRM) coupled with the mixture multiphase approach in the Eulerian framework has been utilized to capture the phase change phenomena inside the nozzle holes. Our previous studies have demonstrated that this approach is capable of capturing the effect of injection transients and thermodynamic conditions in the combustion chamber, by predicting phenomenon such as flash boiling. However, these simulations were expensive, especially if there is significant interest in predicting the spray behavior as well.
Journal Article

A Parametric Optimization Study of a Hydraulic Valve Actuation System

2008-04-14
2008-01-1356
A new camless system (referred to as Hydraulic Valve Control - HVC - system) is in an advanced state of prototyping and development. The present paper aims to support the new incoming activities concerning the possible modifications to the geometrical and mechanical characteristics of the system. The optimization of the new HVC system prototype is done using a multi-objective tool that integrates the hydraulic/mechanical simulator reproducing the physical model, with an optimization software. The latter tool can be used choosing a specific approach among different probabilistic mathematical models; the Genetic Algorithm approach was chosen to achieve the goal of the present study. The paper describes design optimization of the pilot stage of the actuator for given characteristics of the power stage and of the poppet valve.
X