Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Torque-Vectoring Control for an Autonomous and Driverless Electric Racing Vehicle with Multiple Motors

2017-03-28
2017-01-1597
Electric vehicles with multiple motors permit continuous direct yaw moment control, also called torque-vectoring. This allows to significantly enhance the cornering response, e.g., by extending the linear region of the vehicle understeer characteristic, and by increasing the maximum achievable lateral acceleration. These benefits are well documented for human-driven cars, yet limited information is available for autonomous/driverless vehicles. In particular, over the last few years, steering controllers for automated driving at the cornering limit have considerably advanced, but it is unclear how these controllers should be integrated alongside a torque-vectoring system. This contribution discusses the integration of torque-vectoring control and automated driving, including the design and implementation of the torque-vectoring controller of an autonomous electric vehicle for a novel racing competition. The paper presents the main vehicle characteristics and control architecture.
Technical Paper

Tire Thermal Model for Enhanced Vehicle Dynamics Simulation

2009-04-20
2009-01-0441
Brush models permit a more physical simulation of tire performance in comparison with models based on empirical formulas. The paper presents an empirical model for the estimation of tire temperature as function of the actual working conditions of the component. The estimated temperature values enter a tire brush model and provoke the variation of the performance in terms of tangential forces. The model can be empirically tuned through experimental data showing the variation of tire performance as function of temperature. The experimental validation of the model is dealt with in detail.
Technical Paper

Racing Simulation of a Formula 1 Vehicle with Kinetic Energy Recovery System

2008-12-02
2008-01-2964
This paper deals with the development of a Lap Time Simulator in order to carry out a first approximate evaluation of the potential benefits related to the adoption of the Kinetic Energy Recovery System (KERS). KERS will be introduced in the 2009 Formula 1 Season. This system will be able to store energy during braking and then use it in order to supply an extra acceleration during traction. Different technologies (e.g. electrical, hydraulic and mechanical) could be applied in order to achieve this target. The lap time simulator developed by the authors permits to investigate the advantages both in terms of fuel consumption reduction and the improvement of the lap time.
Technical Paper

Enhanced Tire Brush Model for Vehicle Dynamics Simulation

2008-04-14
2008-01-0595
The aim of this paper is the conception of a tire model which allows a good fit with the physical experimental behavior of the component. In the meanwhile, the model should be simple enough to permit real time vehicle dynamics simulation, in the same way as the diffused Pacejka's model. The paper discusses the influence of the model for the estimation of contact patch properties on the overall tire forces and moments. It demonstrates that unrealistic models of the contact patch can lead to a good fit with the experimental data (in terms of forces and self-aligning moment), even if the real physics of the tire is not reproduced. A realistic model implies a significant reduction of the stiffness of the brushes as a function of the vertical load between the tire and the road surface.
Technical Paper

Chassis Torsional Stiffness: Analysis of the Influence on Vehicle Dynamics

2010-04-12
2010-01-0094
It is universally recognized that torsional stiffness is one of the most important properties of a vehicle chassis, [ 1 ]. There are several reasons for which high chassis stiffness is preferable. Lack of chassis torsional stiffness affects the lateral load transfer distribution, it allows displacements of the suspension attachment points that modify suspension kinematics and it can trigger unwanted dynamic effects like resonance phenomena or vibrations, [ 2 ]. The present paper introduces two analytical vehicle models that constitute an efficient tool for a correct evaluation of the main effects of chassis torsional stiffness on vehicle dynamics. In the first part an enhanced steady-state vehicle model is derived and employed for the analysis of the vehicle handling. The model takes account of chassis torsional stiffness for the evaluation of the lateral load transfer and, by means of the concept of the axle cornering stiffness, includes the effects of tire non-linear behavior.
X