Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Wood Microfibres - Effective Reinforcing Agents for Composites

2006-04-03
2006-01-0106
This work is based on a process to develop novel cellulose microfibre reinforced composite materials, and to understand fundamental mechanical properties of these composites. Cellulose microfibres having diameters <1 μm were generated from bleached kraft pulp by a combination of high shear refining and subsequent cryocrushing under liquid nitrogen, followed by filtration through a 60 mesh screen. Through film casting in polyvinyl alcohol, theoretical stiffness of the microfibres was calculated as 69 GPa. Subsequently, these microfibres were successfully dispersed in the bioplastics thermoplastic starch and polylactic acid (PLA), using conventional processing equipments. The high aspect ratio of these microfibres coupled with their high tensile properties imparted superior mechanical strength and stiffness to the composites. These indicated that by suitably choosing the polymer, excellent reinforcement can be achieved for high end applications like automotive parts.
Technical Paper

The Influence of the Bauschinger Effect on Springback Prediction for Dual Phase Steel

2006-04-03
2006-01-0145
Springback is one of the main concerns in sheet metal forming with the increased use of advanced high strength steels, among which dual phase steels are gaining popularity. Although finite element analysis (FEA) has been successfully used in simulating complicated forming processes, it is difficult to accurately predict springback due to certain complex material behaviors such as the non-linear recovery behavior. In this study, the tension-unloading-reloading (TUR) test and XRD analysis have been employed to investigate non-linear recovery through Bauschinger Effect (BE) measurement at different pre-strain levels. The results demonstrated that dual phase steels exhibited the strong BE. The FEA simulation of springback prediction in the deep-draw bending test showed that the simulation accuracy was significantly improved by incorporating the Bauschinger effect.
Technical Paper

The Effect of Surface Modification on the Mechanical Properties of Hemp Fiber/Polyester Composites

2004-03-08
2004-01-0728
In this work hemp fibers were chemically treated in order to improve the fiber/matrix interaction in hemp fiber/unsaturated polyester composites prepared by a Resin Transfer Molding (RTM) process. Chemicals used for paper sizing (AKD, ASA, Rosin Acid and SMA) as well as a silane compound and sodium hydroxide were used to modify the fibers' surface. The tensile, flexural and impact properties of the resulting materials were measured. A slight improvement in mechanical properties was observed for the SMA, silane and alkali treated specimens. However close analysis of these tests and of the fracture surface of the samples showed that there was no amelioration of the fiber/matrix adhesion. It was found that predicted tensile strengths using the rule of mixture were very close to the experimental values obtained in this work. Finally the properties of an hybrid glass fiber/hemp fiber composite were found to be very promising
Journal Article

Selection of Welding Parameter during Friction Stir Spot Welding

2008-04-14
2008-01-0146
The selection of parameters during friction stir spot welding of Al-alloys and Mg-alloys is discussed. The role of tool rotation speed, plunge rate, and dwell time is examined in relation to the tool heating rate,temperature, force, and torque that occur during spot welding. In order to reduce the cycle time and tool force during Al- alloy spot welding, it is necessary to increase the tool rotation speed >1500 RPM. The measured peak temperature in the stir zone is determined by the rotation speed and dwell time, and is ultimately limited by the solidus of the alloy. When tool rotation speeds >1500 RPM are employed during AZ91 Mg-alloy spot welding, the tendency for melted film formation and cracking are greatly increased.
Technical Paper

Model Identification and Analysis of a High Performance Hydrostatic Actuation System

2000-09-11
2000-01-2619
A hydrostatic actuation system referred to as the Electro Hydraulic Actuator (EHA) has been designed and prototyped. In this paper, a mathematical model of the EHA is reviewed and analyzed. This theoretical analysis is supported by open-loop experimental results that indicate the presence of nonlinearities but at a degree that is considerably less than that of conventional hydraulic systems with servo-valves. The behavior of the system can be approximated as piece-wise linear with the damping ratio and natural frequency changing according to a piece-wise operating region. The EHA model is used in conjunction with experimentation and numerical optimization for quantifying the influence of unknown parameters in this system. A parametric model for the EHA is subsequently proposed and validated.
Journal Article

Finite Element Analysis of Friction-Assisted Powder Compaction Process

2012-04-16
2012-01-0051
The major disadvantage of powder metallurgy (PM) is the density gradient throughout the green powder compacts. During the compaction process, due to the existence of friction at powder-tool interfaces, the contact surfaces experience a non-uniform stress distribution having to do with variable friction coefficient and tool kinematics, consequently resulting in density gradient throughout the powder compacts. This represents a serious problem in terms of the reliability and performance of a final product, as the density gradient may contribute to a crack-defect generation during the compaction cycle, and more importantly a non-uniform compact shrinkage during the sintering process. Simulation analyses were conducted using the finite element software, MSC.Marc Mentat, and Shima and Oyane powder constitutive model, to study and suppress the causes of density gradient in the cylindrically shaped green powder compacts.
Technical Paper

Eutectic Segregation and Cracking in AZ91 Friction Stir Spot Welds

2007-04-16
2007-01-1700
Friction stir spot welding of Mg-alloy AZ91 is investigated. The temperature cycles within the stir zone and in the TMAZ region are examined using thermocouples, which are located within the tool itself and also by locating thermocouples in drilled holes at specific locations relative to the bottom of the tool shoulder and the periphery of the rotating pin. The measured temperatures in the stir zone range from 437°C to 460°C (0.98Ts, where Ts is the solidus temperature in degrees Kelvin) in AZ91 spot welds produced using plunge rates from 2.5 and 25 mm/s. The thermal cycle within the stir zone formed during AZ91 spot welding could not be measured by locating thermocouples within the workpiece in drilled holes adjacent to the periphery of the rotating pin.
Technical Paper

Durable Icephobic and Erosion Resistant Coatings Based on Quasicrystals

2023-06-15
2023-01-1455
Quasicrystalline (QC) coatings were evaluated as leading-edge protection materials for rotor craft blades. The QC coatings were deposited using high velocity oxy-fuel thermal spray and predominantly Al-based compositions. Ice adhesion, interfacial toughness with ice, wettability, topography, and durability were assessed. QC-coated sand-blasted carbon steel exhibited better performance in terms of low surface roughness (Sa ~ 0.2 μm), liquid repellency (water contact angles: θadv ~85°, θrec ~23°), and better substrate adhesion compared to stainless steel substrates. To enhance coating performance, QC-coated sand-blasted carbon steel was further exposed to grinding and polishing, followed by measuring surface roughness, wettability, and ice adhesion strength. This reduced the surface roughness of the QC coating by 75%, resulting in lower ice adhesion strengths similar to previously reported values (~400 kPa).
Technical Paper

Cell Nucleation and Growth Study of PP Foaming with CO2 in a Batch-Simulation System

2006-04-03
2006-01-0507
TPO is being used to make automotive parts for its number of advantages: i) low temperature flexibility and ductility, ii) excellent impact/stiffness/flow balance, iii) excellent weatherability, and iv) free-flowing pellet form for easy processing, storage, and handling. However, by foaming TPO, due to its higher rigidity-to-weigh ratio, it would offer additional advantages over the solid counterparts in terms of reduced weight, reduced material cost, and decreased fuel usage without compromising their performance. Since a major component in TPO is polypropylene (PP), understanding PP foaming behaviours is an important step towards understanding TPO foaming. For foam materials, cell density and cell size are two significant parameters that affect their material properties. In this research, we observed the cell nucleation and initial growth behaviours of PP foams blown with CO2 under various experimental conditions in a batch foaming simulation system.
Technical Paper

A Novel Approach for Design and Optimization of Automotive Aluminum Cross-Car Beam Assemblies

2015-04-14
2015-01-1370
Nowadays, moving toward more lightweight designs is the key goal of all major automotive industries, and they are always looking for more mass saving replacements. In this study, a new methodology for the design and optimization of cross-car beam (CCB) assemblies is proposed to obtain a more lightweight aluminum design as a substitution for the steel counterpart considering targeted performances. For this purpose, first, topology optimization on a solid aluminum geometry encompassing the entire design space should be carried out to obtain the element density distribution within the model. Reinforcing locations with high element density and eliminating those with density lower than the threshold value result in the conceptual design of the CCB. To attain the final conceptual design, the process of topology optimization and removal of unnecessary elements should be addressed in several steps.
X