Refine Your Search

Topic

Author

Search Results

Technical Paper

Weldability Improvement Using Coated Electrodes for RSW of HDG Steel

2006-04-03
2006-01-0092
The increased use of zinc coatings on steels has led to a decrease in their weldability. Weld current and time need to be increased in order to achieve sound welds on these materials compared to uncoated steels, and electrode tip life suffers greatly due to rapid alloying and degradation. In this work, typical uncoated Class II electrodes were tested along with a TiC metal matrix composite (MMC) coated electrode. Tests were conducted to study the weldability and process of nugget formation for both electrodes on HDG (hot dipped galvanized) HSLA (high strength low alloys) steels. Current and time ranges were constructed for both types of electrodes by varying either the weld current or weld time while holding all other parameters constant. Analysis of weld microstructures was conducted on cross-sectioned welds using SEM (scanning electron microscopy). Using the coated electrodes reduced weld current and times needed to form MWS (minimum weld size) on the coated steels.
Technical Paper

Weld Failure in Formability Testing of Aluminum Tailor Welded Blanks

2001-03-05
2001-01-0090
The present work investigates weld failure modes during formability tests of multi-gauge aluminum Tailor Welded Blanks (TWBs). The limiting dome height test is used to evaluate formability of TWBs. Three gauge combinations utilizing aluminum alloy 5754 sheets are considered (2 to 1 mm, 1.6 to 1 mm and 2 to 1.6 mm). Three weld orientations have been considered: transverse, longitudinal and 45°. Interaction of several factors determines the type of failure that occurs in a TWB specimen. These factors are weld orientation, morphology and distribution of weld defects, and the magnitude of constraint imposed by the thicker sheet to the thin sheet. The last factor depends on the difference in thickness of the sheet pair and is usually expressed in terms of gauge ratio. In general TWBs show two different types of fracture: weld failure and failure of the thin aluminum sheet. Only the former will be discussed in this paper.
Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

2018-04-03
2018-01-0627
The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Technical Paper

The Importance of Nanotechnology in Developing Better Energy Storage Materials for Automotive Transport

2008-04-14
2008-01-0689
Traditional electrode materials for lithium-ion storage cells are typically crystalline layered structures such as metal oxides, and graphitic carbons. These materials power billions of portable electronic devices in today's society. However, large-scale, high-capacity storage devices capable of powering hybrid electric vehicles (HEV″s) or their plug-in versions (PHEV's) have much more demanding requirements with respect to safety, cost, and the power they must deliver. Recently, nanostructured solid state materials, which are comprised of two more compositional or structural phases, have been found to show exciting possibilities to meet these criteria.
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

The Effect of Nitrogen on the Mechanical Properties of an SAE 1045 Steel

1992-02-01
920667
A cold worked and induction hardened SAE1045 steel component exhibited excessive distortion after cold working and straightening, as well as cracking during straightening after induction hardening. Since the problems occurred only in certain heats of electric furnace (EF) steel, in which nitrogen content can vary widely and in some cases be quite high, and never occurred for basic oxygen furnace (BOF) steel for which nitrogen contents are uniformly low it was suspected that the source of the problem was low temperature nitrogen strain aging in heats of EF steel with a high nitrogen content. The measured distortion and mechanical properties at various stages in the fabrication process showed that while nitrogen content had no significant effect on the hot rolled steel the component distortion and strength after cold working and after induction hardening increased with increasing nitrogen content.
Journal Article

Symbolic Formulation of Multibody Dynamic Equations for Wheeled Vehicle Systems on Three-Dimensional Roads

2010-04-12
2010-01-0719
A method to improve the computational efficiency of analyzing wheeled vehicle systems on three-dimensional (3-D) roads has been developed. This was accomplished by creating a technique to incorporate the tire on a 3-D road in a multibody dynamics model of the vehicle with an approach that formulates the governing equations using symbolic formulation. For general handling analysis performed on the vehicle, the tire forces and moments are determined using a tire model that represents the tire as a set of mathematical expressions. Since these expressions need numerical values to determine the forces and moments, a symbolic solution does not exist. Therefore, the evaluation of the tire forces and moments needs to be done during simulation. However, symbolic operations can be used when the governing equations are formulated to develop an efficient method to evaluate these forces.
Technical Paper

Static and Dynamic Denting of Paint Baked AA6111 Panels: Comparison of Finite Element Predictions and Experiments

2001-10-16
2001-01-3047
This work presents comparisons of finite element model predictions of static and dynamic denting with experimental results. Panels were stamped from 0.81, 0.93 and 1.00mm AA6111-T4 and then paint-baked to produce representative automotive outer body panels. Each type of panel was statically and dynamically dented at three locations using a 25.4mm steel ball. Static denting was accomplished with incremental loading of 22.24N loads up to a maximum of 244.48N. Dynamic denting was accomplished by dropping the steel ball from heights ranging from 200mm to 1200mm. Multi-stage finite element analysis was performed using LS-DYNA1 and ABAQUS2 to predict the entire process of forming, spring-back, denting and final spring-back of the dented panels. The predicted results show good correlation with the experiments, but also highlight the sensitivity of the predictions to formulation of the finite element problem.
Technical Paper

Simulation of Electromagnetic Forming of Aluminum Alloy Sheet

2001-03-05
2001-01-0824
Electromagnetic forming of aluminum alloys provides improved forming limits, minimal springback and rapid implementation. The ability to predict the minimum energy required in electromagnetic forming is essential in developing an efficient process. Understanding the development of the strain distribution over time in the blank is also highly desired. A numerical model is needed that offers insight into these areas and the electromagnetic forming process in general that cannot easily be extracted from experiments. To address these concerns, ANSYS/EMAG is used to model the time varying currents that are discharged through the coil in order to obtain the transient magnetic forces acting on the blank. The body forces caused by electromagnetic induction are then used as the boundary condition to model the high velocity deformation of the blank with LS-DYNA, an explicit dynamic finite element code.
Technical Paper

STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled Driving Automation

2024-04-09
2024-01-2643
Driving Automation Systems (DAS) are subject to complex road environments and vehicle behaviors and increasingly rely on sophisticated sensors and Artificial Intelligence (AI). These properties give rise to unique safety faults stemming from specification insufficiencies and technological performance limitations, where sensors and AI introduce errors that vary in magnitude and temporal patterns, posing potential safety risks. The Safety of the Intended Functionality (SOTIF) standard emerges as a promising framework for addressing these concerns, focusing on scenario-based analysis to identify hazardous behaviors and their causes. Although the current standard provides a basic cause-and-effect model and high-level process guidance, it lacks concepts required to identify and evaluate hazardous errors, especially within the context of AI. This paper introduces two key contributions to bridge this gap.
Technical Paper

Report of NADDRG Friction Committee on Reproducibility of Friction Tests within and Between Laboratories

1993-03-01
930811
The present paper offers a status report on round-robin tests conducted with the participation of ten laboratories, with drawbead simulation (DBS) as the test method. The results showed that, in most laboratories, the coefficient of friction (COF) derived from the test is repeatable within an acceptable range of ±0.01. Repeatability between laboratories was less satisfactory. Five laboratories reported results within the desirable band, while some laboratories found consistently higher values. In one instance this could be traced to incomplete transfer of clamp forces to the load cell, in other instances inaccurate test geometry is suspected. Therefore, numerical values of COF from different laboratories are not necessarily comparable. Irrespective of these inter-laboratory variations, the relative ranking of lubricants was not affected, and data generated within one laboratory can be used for relative evaluations and for a resolution of production problems.
Technical Paper

Refrigeration Load Identification of Hybrid Electric Trucks

2014-04-01
2014-01-1897
This paper seeks to identify the refrigeration load of a hybrid electric truck in order to find the demand power required by the energy management system. To meet this objective, in addition to the power consumption of the refrigerator, the vehicle mass needs to be estimated. The Recursive Least Squares (RLS) method with forgetting factors is applied for this estimation. As an example of the application of this parameter identification, the estimated parameters are fed to the energy control strategy of a parallel hybrid truck. The control system calculates the demand power at each instant based on estimated parameters. Then, it decides how much power should be provided by available energy sources to minimize the total energy consumption. The simulation results show that the parameter identification can estimate the vehicle mass and refrigeration load very well which is led to have fairly accurate power demand prediction.
Technical Paper

Parameter Optimization and Characterization of Aluminum-Copper Laser Welded Joints

2024-04-09
2024-01-2428
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper.
Technical Paper

Numerical and Experimental Investigation of 5xxx Aluminum Alloy Stretch Flange Forming

2004-03-08
2004-01-1051
Stretch flange features are commonly found in the corner regions of commercial parts, such as window cutouts, where large strains can induce localization and necking. In this study, laboratory-scale stretch flange forming experiments on AA5182 and AA5754 were conducted to address the formability of these aluminum alloys under undergoing this specific deformation process. Two distinct cracking modes were found in the stretch flange samples. One is radial cracking at the inner edge of flange (cutout edge) while the other is circumferential cracking away from the inner edge at the punch profile radius. Numerical simulation of the stretch flange forming operations was conducted with an explicit finite element code-LS-DYNA. A coalescence-suppressed Gurson-based material model is used in the finite element model. Void coalescence and final failure in stretch flange is simulated through measured second-phase particle fields with a so-called damage percolation model.
Technical Paper

Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet

2019-04-02
2019-01-0530
Vehicle weight reduction through the use of components made of magnesium alloys is an effective way to reduce carbon dioxide emission and improve fuel economy. In the design of these components, which are mostly under cyclic loading, notches are inevitably present. In this study, surface strain distribution and crack initiation sites in the notch region of AZ31B-H24 magnesium alloy notched specimens under uniaxial load are measured via digital image correlation. Predicted strains from finite element analysis using Abaqus and LS-DYNA material types 124 and 233 are then compared against the experimental measurements during quasi-static and cyclic loading. It is concluded that MAT_233, when calibrated using cyclic tensile and compressive stress-strain curves, is capable of predicting strain at the notch root. Finally, employing Smith-Watson-Topper model together with MAT_233 results, fatigue lives of the notched specimens are estimated and compared with experimental results.
Technical Paper

Multi-Scale FE/Damage Percolation Modeling of Ductile Damage Evolution in Aluminum Sheet Forming

2004-03-08
2004-01-0742
A so-called damage percolation model is coupled with Gurson-based finite element (FE) approach in order to accommodate the high strain gradients and localized ductile damage. In doing so, void coalescence and final failure are suppressed in Gurson-based FE modeling while a measured second phase particle field is mapped onto the most damaged mesh area so that percolation modeling can be performed to capture ductile fracture in real sheet forming operations. It is revealed that void nucleation within particle clusters dominates ductile fracture in aluminum alloy sheet forming. Coalescence among several particle clusters triggered final failure of materials. A stretch flange forming is simulated with the coupled modeling.
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Journal Article

Modes of Automated Driving System Scenario Testing: Experience Report and Recommendations

2020-04-14
2020-01-1204
With the widespread development of automated driving systems (ADS), it is imperative that standardized testing methodologies be developed to assure safety and functionality. Scenario testing evaluates the behavior of an ADS-equipped subject vehicle (SV) in predefined driving scenarios. This paper compares four modes of performing such tests: closed-course testing with real actors, closed-course testing with surrogate actors, simulation testing, and closed-course testing with mixed reality. In a collaboration between the Waterloo Intelligent Systems Engineering (WISE) Lab and AAA, six automated driving scenario tests were executed on a closed course, in simulation, and in mixed reality. These tests involved the University of Waterloo’s automated vehicle, dubbed the “UW Moose”, as the SV, as well as pedestrians, other vehicles, and road debris.
Technical Paper

Modelling Diesel Engine Natural Gas Injection: Injector/Cylinder Boundary Conditions

1994-03-01
940329
Direct injected natural gas diesel engines are currently being developed. Numerical analyses results are presented for 20.0 MPa (≈ 3000 psia; 200 atm), 444 K, natural gas injection into 4.0 MPa cylinder air where the ambient turbulence field is representative of diesel engines. Two very important non-intuitive, observations are made. First, the seemingly reasonable spatially uniform velocity profile currently used at the injector exit is not appropriate, rather a double-hump profile is correct. Second, a spatially uniform, injector exit, temperature profile results in local temperature overestimates as large as 300 K. Considering the strong role of temperature on chemical kinetics, this second observation may have profound implications on the validity of conclusions reached using uniform exit profiles.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
X