Refine Your Search

Topic

Author

Search Results

Technical Paper

Wind Tunnel Study on the “Wake Bubble” of Model Truck

2008-04-14
2008-01-0739
Heavy traffic volume makes tailgating a common picture on the road today. Wake interference, particularly in the scenario when a relatively small sedan drives into the wake of a large truck, may raise some serious highway safety concerns. In this paper, the characteristics of the separation bubble of model trucks with various degrees of details are studied. The objective is to find out the impact of truck model details on the characteristics of the wake bubble. Our wind tunnel results revealed that the degree of model detail has a significant effect on the wake bubble; the bubble length increases with model details.
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
Technical Paper

Wear and Galvanic Corrosion Protection of Mg alloy via Plasma Electrolytic Oxidation Process for Mg Engine Application

2009-04-20
2009-01-0790
Sliding wear of magnesium (Mg) engine cylinder bore surfaces and corrosion of Mg engine coolant channels are the two unsolved critical issues that automakers have to deal with in development of magnesium-intensive engines. In this paper, Plasma Electrolytic Oxidation (PEO) process was used to produce oxide coatings on AJ62 Mg alloy to provide wear and corrosion protection. In order to optimize the PEO process, orthogonal experiments were conducted to investigate the effect of PEO process parameters on the wear properties of PEO coatings. The PEO coatings showed a much better wear resistance, as well as a smaller friction coefficient, than the AJ62 substrate. The galvanic corrosion property of AJ62 Mg coupled with stainless steel and aluminum (Al) was investigated via immersion corrosion test in an engine coolant. Applying PEO coating on Mg can effectively prevent the galvanic corrosion attack to Mg.
Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Technical Paper

Variable Torque Distribution Yaw Moment Control for Hybrid Powertrains

2007-04-16
2007-01-0278
This paper proposes and evaluates the use of a robust variable torque distribution (VTD) yaw moment control for an all wheel drive (AWD) hybrid vehicle prototype currently under development. The proposed VTD controller was used to improve the linearity of vehicle response to driver input through the modulation of front-to-rear torque distribution and a corrective torque differential between the left and right rear wheels. The development of a non-linear vehicle model and a reference model tracking sliding mode based control are discussed. The efficacy of the proposed control system was demonstrated through the use of numerical simulations using the developed non-linear vehicle model. The simulation results presented indicate the effectiveness of the proposed system and the potential restrictions to such a system including tire saturation and drivetrain component limitations.
Journal Article

Using Neural Networks to Examine the Sensitivity of Composite Material Mechanical Properties to Processing Parameters

2016-04-05
2016-01-0499
Successful manufacture of Carbon Fibre Reinforced Polymers (CFRP) by Long-Fibre Reinforced Thermoplastic (LFT) processes requires knowledge of the effect of numerous processing parameters such as temperature set-points, rotational machinery speeds, and matrix melt flow rates on the resulting material properties after the final compression moulding of the charge is complete. The degree to which the mechanical properties of the resulting material depend on these processing parameters is integral to the design of materials by any process, but the case study presented here highlights the manufacture of CFRP by LFT as a specific example. The material processing trials are part of the research performed by the International Composites Research Centre (ICRC) at the Fraunhofer Project Centre (FPC) located at the University of Western Ontario in London, Ontario, Canada.
Technical Paper

Uses for Stabilized Aluminum Foam in Crashworthiness and Strengthening Applications

2003-03-03
2003-01-1295
Stabilized Aluminum Foam (SAF) is a material produced by introducing gas bubbles into molten aluminum. Two examples will be used to illustrate the potential use of SAF in energy absorption and structural reinforcement applications. The first is use of SAF in a crashbox to absorb energy in a 15km/hr collision and prevent damage to the rails as part of a front-end energy management system. The second is as a filler in a hollow structure subject to bending loads, which potentially could find application in rails and pillars. By filling a hollow structure with SAF, the bending strength is increased dramatically while the weight increases are not significant. Numerical modeling using LS DYNA gave very good agreement with experimental results.
Technical Paper

Use of Rigid and Deformable Child Restraint Seats in Finite Element Simulations of Frontal Crashes

2006-04-03
2006-01-1141
This research focuses on the injury potential of children seated in forward facing child restraint seats during frontal vehicle crashes. Experimental sled tests were completed in accordance to the Federal Motor Vehicle Safety Standard 213 using a Hybrid III three-year-old dummy in a five point child restraint system. A full vehicle crash test was completed in accordance to the Canadian Motor Vehicle Safety Standard 208 with the addition of a three-year-old Hybrid III crash test dummy, seated behind the passenger seat, restrained in the identical five-point child safety seat. Different child restraint finite element models were developed incorporating a subset of the apparatus used in the two experimental tests and simulated using LS-DYNA.
Technical Paper

Transient Response of Minichannel Heat Exchanger Using Al2O3-EG/W Nanofluid

2016-04-05
2016-01-0229
A numerical study is performed to investigate the transient heat transfer and flow characteristics of aluminum oxide (Al2O3) nanoparticles dispersed in 50:50 ethylene glycol/water (EG/W) base fluid in a multipass crossflow minichannel heat exchanger. The time dependent thermal responses of the system in a laminar regime are predicted by solving the conservation equations using the finite volume method and SIMPLE algorithm. The transient regime is caused by a step change of nanofluid mass flow rate at the inlet of the minichannel heat exchanger. This step change can be analogous with a thermostat operation. In this study, three volume fractions up to 3 percent of Al2O3 nanoparticles dispersed to the base fluid EG/W are modeled and analyzed. In the numerical simulation, Al2O3-EG/W nanofluid is considered as a homogenous single-phase fluid. An analysis of the transient response for the variation of nanofluids volume concentrations is conducted.
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Technical Paper

Thermal Efficiency Analyses of Diesel Low Temperature Combustion Cycles

2007-10-29
2007-01-4019
Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles on a common-rail diesel engine with a conventional diesel fuel. Empirical studies have been conducted under independently controlled exhaust gas recirculation, intake boost, and exhaust backpressure. Up to 8 fuel injection pulses per cylinder per cycle have been applied to modulate the homogeneity history of the early injection diesel low temperature combustion operations in order to improve the phasing of the combustion process. The impact of heat release phasing, duration, shaping, and splitting on the thermal efficiency has been analyzed with zero-dimensional engine cycle simulations. This paper intends to identify the major parameters that affect diesel low temperature combustion engine thermal efficiency.
Technical Paper

The University of Windsor - St. Clair College E85 Silverado

2001-03-05
2001-01-0680
The fuel called E-85 can be burned effectively in engines similar to the engines currently mass-produced for use with gasoline. Since the ethanol component of this fuel is produced from crops such as corn and sugar cane, the fuel is almost fully renewable. The different physical and chemical properties of E-85, however, do require certain modifications to the common gasoline engine. The Windsor - St. Clair team has focused their attention to modifications that will improve fuel efficiency and reduce tailpipe emissions. Other modifications were also performed to ensure that the vehicle would still operate with the same power and driveability as its gasoline counterpart.
Technical Paper

The Impact of Intake Dilution and Combustion Phasing on the Combustion Stability of a Diesel Engine

2014-04-01
2014-01-1294
Conventionally, the diesel fuel ignites spontaneously following the injection event. The combustion and injection often overlap with a very short ignition delay. Diesel engines therefore offer superior combustion stability characterized by the low cycle-to-cycle variations. However, the enforcement of the stringent emission regulations necessitates the implementation of innovative diesel combustion concepts such as the low temperature combustion (LTC) to achieve ultra-low engine-out pollutants. In stark contrast to the conventional diesel combustion, the enabling of LTC requires enhanced air fuel mixing and hence a longer ignition delay is desired. Such a decoupling of the combustion events from the fuel injection can potentially cause ignition discrepancy and ultimately lead to combustion cyclic variations.
Technical Paper

The First and Second Law Analysis of Spark Ignition Engine Fuelled with Compressed Natural Gas

2003-10-27
2003-01-3091
This paper presents a fundamental thermodynamic modeling approach to study internal combustion engines. The computations of the thermodynamic functions, especially availability, have been developed to seek better energy utilization, analyze engine performance and optimize design of spark ignition (SI) engines fueled with compressed natural gas (CNG), by using both the first and the second law analyses. A single-zone heat release model with constant thermodynamic properties is built into the air cycle simulation, while a more comprehensive two-zone combustion model with burning rate as a sinusoidal function of crank angle is built into the fuel/air thermodynamic engine cycle simulation. The computations mainly include pressure, unburned and burned zone temperature, indicated work, heat loss, mass blowby, availability destruction due to combustion, fuel chemical availability, availability transfer with heat, availability transfer with work and availability exhaust to the environment.
Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Technical Paper

The Band Importance Function in the Evaluation of the Speech Intelligibility Index at the Speech Reception Threshold within a Simulated Driving Environment

2013-05-13
2013-01-1953
This study provides an overview of a novel method for evaluating in-vehicle speech intelligibility using the Speech Intelligibility Index (SII). The approach presented is based on a measured speech signal evaluated at the sentence Speech Reception Threshold (sSRT) in a simulated driving environment. In this context, the impact of different band importance functions in the evaluation of the SII using the Hearing in Noise Test (HINT) in a driving simulator is investigated.
Journal Article

Surface Fatigue Cracking Behavior of a CrN-Coated Tool Steel Influenced by Sliding Cycles and Sliding Energy Density

2017-03-28
2017-01-0303
Light-weighting of vehicles is one of the challenges for transportation industry due to the increasing pressure of demands in better fuel economy and environment protection. Advanced high strength steels (AHSS) are considered as prominent material of choice to realize lightweight auto body and structures at least in near term. Stamping of AHSS with conventional die materials and surface coatings, however, results in frequent die failures and undesired panel surface finish. A chromium nitride (CrN) coating with plasma nitriding case hardened layer on a die material (duplex treatment) is found to offer good wear and galling resistances. The coating failure initiates from fatigue cracking on the coating surface due to cyclic sliding frictions. In this work, cyclic inclined sliding wear test was used to imitate a stamping process for study on development of coating fatigue cracking, including crack length and spacing vs. sliding-cycles and sliding energy densities.
Technical Paper

Surface Effect of a PEO Coating on Friction at Different Sliding Velocities

2015-04-14
2015-01-0687
In order to reduce the weight of an automotive engine, an aluminum (Al) alloy engine block with cast iron liner has been successfully used to replace the gray cast iron engine. For newly emerging Al linerless engine in which the low surface hardness of the aluminum alloy has to be overcome, a few surface processing technologies are used to protect the surface of cylinders. Among them, plasma transferred wire arc (PTWA) thermal spraying coating is becoming popular. Plasma electrolytic oxidation (PEO) coating is also proposed for increasing the wear resistance of aluminum alloy and reducing the friction between the cylinder and piston. In this work, a PEO coating with a thickness of ∼20 μm was prepared, and a high speed pin-on-disc tribometer was used to study the tribological behavior of the coating at oil lubricant conditions. Different surface roughness of the coating and a large range of the sliding speeds were employed for the tests.
Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
Technical Paper

Study of Low Temperature Combustion with Neat n-Butanol on a Common-rail Diesel Engine

2015-03-10
2015-01-0003
This study investigates neat n-butanol, as a cleaner power source, to directly replace conventional diesel fuels for enabling low temperature combustion on a modern common-rail diesel engine. Engine tests are performed at medium engine loads (6∼8 bar IMEP) with the single-shot injection strategy for both n-butanol and diesel fuels. As indicated by the experimental results, the combustion of neat n-butanol offers comparable engine efficiency to that of diesel while producing substantially lower NOx emissions even without the use of exhaust gas recirculation. The greater resistance to auto-ignition allows n-butanol to undergo a prolonged ignition delay for air-fuel mixing; the high volatility helps to enhance the cylinder charge homogeneity; the fuel-borne oxygen contributes to smoke reduction and, as a result, the smoke emissions of n-butanol combustion are generally at a near-zero level under the tested engine operating conditions.
X