Refine Your Search


Search Results

Viewing 1 to 17 of 17
Technical Paper

Wear and Galvanic Corrosion Protection of Mg alloy via Plasma Electrolytic Oxidation Process for Mg Engine Application

Sliding wear of magnesium (Mg) engine cylinder bore surfaces and corrosion of Mg engine coolant channels are the two unsolved critical issues that automakers have to deal with in development of magnesium-intensive engines. In this paper, Plasma Electrolytic Oxidation (PEO) process was used to produce oxide coatings on AJ62 Mg alloy to provide wear and corrosion protection. In order to optimize the PEO process, orthogonal experiments were conducted to investigate the effect of PEO process parameters on the wear properties of PEO coatings. The PEO coatings showed a much better wear resistance, as well as a smaller friction coefficient, than the AJ62 substrate. The galvanic corrosion property of AJ62 Mg coupled with stainless steel and aluminum (Al) was investigated via immersion corrosion test in an engine coolant. Applying PEO coating on Mg can effectively prevent the galvanic corrosion attack to Mg.
Technical Paper

Surface Effect of a PEO Coating on Friction at Different Sliding Velocities

In order to reduce the weight of an automotive engine, an aluminum (Al) alloy engine block with cast iron liner has been successfully used to replace the gray cast iron engine. For newly emerging Al linerless engine in which the low surface hardness of the aluminum alloy has to be overcome, a few surface processing technologies are used to protect the surface of cylinders. Among them, plasma transferred wire arc (PTWA) thermal spraying coating is becoming popular. Plasma electrolytic oxidation (PEO) coating is also proposed for increasing the wear resistance of aluminum alloy and reducing the friction between the cylinder and piston. In this work, a PEO coating with a thickness of ∼20 μm was prepared, and a high speed pin-on-disc tribometer was used to study the tribological behavior of the coating at oil lubricant conditions. Different surface roughness of the coating and a large range of the sliding speeds were employed for the tests.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Load and Lubricating Oil Effects on Friction of a PEO Coating at Different Sliding Velocities

Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
Technical Paper

In-Cylinder Pressure Measurements with Optical Fiber and Piezoelectric Pressure Transducers

Highly accurate cylinder pressure data can be acquired using a wall-mounted and water-cooled quartz piezoelectric transducer. However, this type of transducer does not satisfy the cost and packaging constraints when used in a production engine application. A potential solution to these issues that has been the interest of many is the much smaller and less expensive optical fiber based pressure transducer. This research compares Kistler piezoelectric transducers to Optrand optical fiber transducers. The influence of the transducer type and mounting arrangement on the quality of cylinder pressure data was examined. The transducers were evaluated on a DaimlerChrysler 4.7L V-8 Compressed Natural Gas fuelled test engine. The analysis method is comprised of examining measured individual cycle and ensemble-averaged cylinder pressure records to assess the quality of the data and its usefulness for engine management.
Technical Paper

Implementation of a Dual Coil Ignition Strategy in a Split-Cycle Engine

A Split-Cycle engine fueled with methane has been constructed and operated at the University of Windsor. A split-cycle engine consists of two interconnected cylinders working together to preform the four engine strokes. Cylinder 1 preforms intake and compression strokes while cylinder 2 is where combustion, expansion and exhaust occur. The connecting high pressure crossover passage is where methane is injected, resulting in a well pre-mixed air-fuel mixture. Transfer occurs to the combustion cylinder near TDC, resulting in intense small scale turbulence that leads to short combustion durations under 30° CA. Short durations are achieved despite low engine speeds of 850-1200 rpm, late combustion phasing and part loads. Of note is the lean limit of operation of the engine at the equivalence ratio Φ = 0.85, which is high compared to other natural gas engines which have limits around Φ = 0.6.
Technical Paper

Ignition Improvement of Premixed Methane-Air Mixtures by Distributed Spark Discharge

In order to improve the fuel economy for future high-efficiency spark ignition engines, the use of advanced combustion strategies with an overall lean and/or exhaust gas recirculation diluted cylinder charge is deemed to be beneficial, provided a reliable ignition process available. In this paper, experimental results of igniting methane-air mixture by means of capacitive coupled ignition and multi-coil distributed spark ignition are presented. It is found that with a conventional spark plug electrode configuration, increase of spark energy does not proportionally enhance the ignition flame kernel development. The use of capacitive coupled ignition to enhance the initial transient power resulted in faster kernel growth compared to the conventional system. The distribution of the spark energy across a number of spark gaps shows considerable benefit.
Technical Paper

Heat Release Based Adaptive Control to Improve Low Temperature Diesel Engine Combustion

Heat-release and cylinder pressure based adaptive fuel-injection control tests were performed on a modern common-rail diesel engine to improve the engine operation in the low-temperature combustion (LTC) region. A single shot injection strategy with heavy amount of exhaust gas recirculation (EGR) was used to modulate the in-cylinder charge conditions to achieve the low-temperature combustion. Adaptive fuel-injection techniques were used to anchor the cylinder pressure characteristics in the desired crank angle window and thereby stabilize the engine operation. The response of the adaptive control to boost, fueling, and engine speed variations was also tested. A combination of adaptive fuel-injection and automatic boost/back-pressure controls had helped to make the transient emissions comparable to the steady-state LTC emissions.
Technical Paper

Engine Fault Detection Using Vibration Signal Reconstruction in the Crank-Angle Domain

Advanced engine test methods incorporate several different sensing and signal processing techniques for identifying and locating manufacturing or assembly defects of an engine. A successful engine test method therefore, requires advanced signal processing techniques. This paper introduces a novel signal processing technique to successfully detect a faulty internal combustion engine in a quantitative manner. Accelerometers are mounted on the cylinder head and lug surfaces while vibration signals are recorded during engine operation. Using the engine's cam angular position, the vibration signals are transformed from the time domain to the crank-angle domain. At the heart of the transformation lies interpolation. In this paper, linear, cubic spline and sinc interpolation methods are demonstrated for reconstructing vibration signals in the crank-angle domain.
Technical Paper

Effect of Surface Roughness and Sliding Velocity on Tribological Properties of an Oxide-Coated Aluminum Alloy

Aluminum engines have been successfully used to replace heavy gray cast engines to lighten the car's weight and reduce the fuel consumption. To overcome the aluminum alloys' poor wear resistance, cast iron liners and thermal spraying coatings were used as cylinder bore materials for wear protection. A plasma electrolytic oxidation (PEO) technique had also been proposed to produce an oxide coating on aluminum cylinder bore. The oxide coating can have a low coefficient of friction (COF) and minimum wear shown in the lab tests. To conserve more fuel, the stopping and restarting system was introduced when the vehicle was forced to stop immediately for a short time. When the engine was forced to stop and restart, the reciprocating speed of the piston was very slow, and the friction between the piston and the cylinder was high. In this research, a pin-on-disc tribometer was used to investigate tribological behavior of the oxide coating on an aluminum alloy.
Technical Paper

Development of a Fuel Injection Strategy for Diesel LTC

A production V-8 engine was redesigned to run on low temperature combustion (LTC) with conventional Diesel fuel. Two fuel injection strategies were used to attain reduction in soot and NOx; a) early premixed injection strategy: fuel injected early during the compression stroke and b) late premixed injection strategy: fuel injected close to TDC with heavy EGR. The early premixed injection strategy yielded low NOx and soot but struggled to vaporize the fuel as noted in unburned hydrocarbons readings. The late premixed injection strategy introduced the fuel at higher in-cylinder temperatures and densities, improving the fuel's vaporization and limited the unburned hydrocarbon and carbon monoxide. The use of high EGR and high injection pressure for late premixed injection strategy provided sufficiently long ignition delay that resulted in partially premixed cylinder charge before combustion, and thereby prevented high soot, even in presence of high EGR.
Technical Paper

Cosimulation of Active Suspension

The purpose of this study is to determine the feasibility of simulating an active suspension using cosimulation. The vehicle used is a utility truck created in ADAMS/View while the E.C.U. (electronic control unit) is implemented in Simulink for both a fully-active and semi-active controller. The LQR (Linear Quadratic Regulator) is used for the fully-active system while the semi-active system uses a switching law adopted from Karnopp et al. {1}. Nonlinear and linear vehicle models are compared and the influence of suspension bushings is examined. All simulations undertaken are geared towards evaluating the ride capabilities of such systems.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Technical Paper

Active Suspension Handling Simulation using Cosimulation

In this study the capabilities of a semi-active suspension and an active roll suspension are evaluated for comparison with a passive suspension. The vehicle used is a utility truck modeled as a multi-body system in ADAMS/Car while the ECU (electronic control unit) is built in Matlab/Simulink. Cosimulation is used in linking the vehicle model with the controller by exchanging the input and output values of each sub-system with one another. For the simulation models considered, results indicate that for a fish-hook cornering maneuver the semi-active suspension is limited in increasing vehicle performance while the active roll suspension significantly improves it. Further analysis is needed to confirm these findings.
Technical Paper

A Preliminary Study of the Discharge Current and Spark Energy for the Multi-Coil Offset Strategy

To overcome the unfavorable operation conditions caused by lean/diluted charges in modern Spark Ignited (SI) engines, various advanced ignition systems have been proposed in the past. Among them, the dual-coil and multi-coil Transistor Coil Ignition (TCI) systems with offset discharge strategy caused significant attention in literature because they can generate a continuous spark with high spark energy being delivered into the cylinder. Comparing with the dual-coil system, a multi-coil system is capable to apply more flexible control strategies and generate a higher discharge current. However, the spark energy and transfer efficiency of the multi-coil system are still worthy to investigate as they are important performance indicators for a TCI system. In this paper, the discharge characteristics of the dual-coil and triple-coil strategies under both quiescent and flow conditions were studied firstly by experimental methods.