Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Surface Effect of a PEO Coating on Friction at Different Sliding Velocities

2015-04-14
2015-01-0687
In order to reduce the weight of an automotive engine, an aluminum (Al) alloy engine block with cast iron liner has been successfully used to replace the gray cast iron engine. For newly emerging Al linerless engine in which the low surface hardness of the aluminum alloy has to be overcome, a few surface processing technologies are used to protect the surface of cylinders. Among them, plasma transferred wire arc (PTWA) thermal spraying coating is becoming popular. Plasma electrolytic oxidation (PEO) coating is also proposed for increasing the wear resistance of aluminum alloy and reducing the friction between the cylinder and piston. In this work, a PEO coating with a thickness of ∼20 μm was prepared, and a high speed pin-on-disc tribometer was used to study the tribological behavior of the coating at oil lubricant conditions. Different surface roughness of the coating and a large range of the sliding speeds were employed for the tests.
Journal Article

Plasmonic in Metallic Nanostructures – Fabrication, Characterization and Applications in Surface-Enhanced Spectroscopy

2008-04-14
2008-01-1267
We are witnessing a rapid and ongoing expansion of nanoscience, driven by potential applications in advanced materials and nanotechnology. There is a race to develop techniques that may allow controlling the size, shape of nanostructures that can allow the tuning of their optical and electronic properties. Plasmonics is a field that encompasses and profits from the optical enhancement in nanostructures that support plasmon excitations. One of these new techniques is surface-enhanced Raman scattering (SERS), commonly used for nanostructure characterization. In the present report, we present a theoretical model for plasmon excitation and electric field enhancement that help to provide an explanation for the special features observed in experimental SERS. Two sets of experimental results are discussed illustrating the make out of the signature of the plasmonics producing the optical enhancement.
Technical Paper

Load and Lubricating Oil Effects on Friction of a PEO Coating at Different Sliding Velocities

2017-03-28
2017-01-0464
Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
Technical Paper

Investigating Process Parameters and Microhardness Predictive Modeling Approaches for Single Bead 420 Stainless Steel Laser Cladding

2017-03-28
2017-01-0283
Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
Technical Paper

Identification of Damage Parameters Using Virtual Fields Method and Finite Element Model Updating

2007-04-16
2007-01-0999
Whole field displacement/strain measurement of automotive components can be done efficiently by digital image correlation based technique. Inverse problems with this kind of input data, such as the identification of damage parameters/effective modulus in different part of a component, can be pursued by either virtual fields method or finite element model updating. In this paper, the two methods are applied to the identification of a tension plate with a circular hole, and different aspects of the two methods are discussed. It is found that the success of virtual fields method relies on the choice of a set of optimal virtual displacement fields; finite element model updating, on the other hand, can be applied to any geometry and any load condition, and can also be applied to problems where only limited number of measurements are available. However, its performance relies on the choice of optimization algorithms.
Journal Article

Ferritic Nitrocarburizing of SAE 1010 Plain Carbon Steel Parts

2015-04-14
2015-01-0601
Ferritic nitrocarburizing offers excellent wear, scuffing, corrosion and fatigue resistance by producing a thin compound layer and diffusion zone containing ε (Fe2-3(C, N)), γ′ (Fe4N), cementite (Fe3C) and various alloy carbides and nitrides on the material surface. It is a widely accepted surface treatment process that results in smaller distortion than carburizing and carbonitriding processes. However this smaller distortion has to be further reduced to prevent the performance issues, out of tolerance distortion and post grinding work hours/cost in an automotive component. A numerical model has been developed to calculate the nitrogen and carbon composition profiles of SAE 1010 torque converter pistons during nitrocarburizing treatment. The nitrogen composition profiles are modeled against the part thickness to predict distortion.
Technical Paper

Effect of Surface Roughness and Sliding Velocity on Tribological Properties of an Oxide-Coated Aluminum Alloy

2014-04-01
2014-01-0957
Aluminum engines have been successfully used to replace heavy gray cast engines to lighten the car's weight and reduce the fuel consumption. To overcome the aluminum alloys' poor wear resistance, cast iron liners and thermal spraying coatings were used as cylinder bore materials for wear protection. A plasma electrolytic oxidation (PEO) technique had also been proposed to produce an oxide coating on aluminum cylinder bore. The oxide coating can have a low coefficient of friction (COF) and minimum wear shown in the lab tests. To conserve more fuel, the stopping and restarting system was introduced when the vehicle was forced to stop immediately for a short time. When the engine was forced to stop and restart, the reciprocating speed of the piston was very slow, and the friction between the piston and the cylinder was high. In this research, a pin-on-disc tribometer was used to investigate tribological behavior of the oxide coating on an aluminum alloy.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

An Experimental Method to Study the Sensitivity of Transmission Laser Welding of Plastic Parts to Interfacial Gaps

2009-04-20
2009-01-1298
Hollow polymer-based automotive components cannot, in general, be directly injection molded because they cannot be ejected from the mold. The common practice is to injection mold two or more parts, and then join these together with a welding process. Of the many joining process available, laser welding has an advantage in geometric design freedom. The laser weld joints are also generally stronger than those of vibration welds because the weld joints are located in the walls rather than on external flanges. Eliminating the external flanges also makes the part more compact. In transmission laser welding processes, the laser beam passes through a transparent part to its interface with an opaque part. The beam energy is absorbed near the interface in the opaque part, and heat flows back across to the transparent half to make the weld pool. So successful laser welds are possible only when there is a continuous interfacial fit between the parts.
Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Technical Paper

A Hardness Study on Laser Cladded Surfaces for a Selected Bead Overlap Conditions

2017-03-28
2017-01-0285
Laser cladding is used to coat a surface of a metal to enhance the metallurgical properties at the surface level of a substrate. For surface cladding operations, overlapping bead geometry is required. Single bead analyses do not provide a complete representation of essential properties; hence, this research focuses on overlapping conditions. The research scope targets the coaxial laser cladding process specifically for P420 stainless steel clad powder using a fiber optic laser with a 4.3 mm spot size on a low/medium carbon structural steel plate (AISI 1018). Many process parameters influence the bead geometrical shape, and it is assumed that the complex temperature distributions within the process could cause subsequent large variations in hardness values. The bead overlap configurations experiments are performed with 40%, 50% and 60% bead overlaps for a three-pass bead formation.
X