Refine Your Search

Topic

Search Results

Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Technical Paper

Thermal Efficiency Analyses of Diesel Low Temperature Combustion Cycles

2007-10-29
2007-01-4019
Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles on a common-rail diesel engine with a conventional diesel fuel. Empirical studies have been conducted under independently controlled exhaust gas recirculation, intake boost, and exhaust backpressure. Up to 8 fuel injection pulses per cylinder per cycle have been applied to modulate the homogeneity history of the early injection diesel low temperature combustion operations in order to improve the phasing of the combustion process. The impact of heat release phasing, duration, shaping, and splitting on the thermal efficiency has been analyzed with zero-dimensional engine cycle simulations. This paper intends to identify the major parameters that affect diesel low temperature combustion engine thermal efficiency.
Technical Paper

The Impact of Intake Dilution and Combustion Phasing on the Combustion Stability of a Diesel Engine

2014-04-01
2014-01-1294
Conventionally, the diesel fuel ignites spontaneously following the injection event. The combustion and injection often overlap with a very short ignition delay. Diesel engines therefore offer superior combustion stability characterized by the low cycle-to-cycle variations. However, the enforcement of the stringent emission regulations necessitates the implementation of innovative diesel combustion concepts such as the low temperature combustion (LTC) to achieve ultra-low engine-out pollutants. In stark contrast to the conventional diesel combustion, the enabling of LTC requires enhanced air fuel mixing and hence a longer ignition delay is desired. Such a decoupling of the combustion events from the fuel injection can potentially cause ignition discrepancy and ultimately lead to combustion cyclic variations.
Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
Technical Paper

Study of Low Temperature Combustion with Neat n-Butanol on a Common-rail Diesel Engine

2015-03-10
2015-01-0003
This study investigates neat n-butanol, as a cleaner power source, to directly replace conventional diesel fuels for enabling low temperature combustion on a modern common-rail diesel engine. Engine tests are performed at medium engine loads (6∼8 bar IMEP) with the single-shot injection strategy for both n-butanol and diesel fuels. As indicated by the experimental results, the combustion of neat n-butanol offers comparable engine efficiency to that of diesel while producing substantially lower NOx emissions even without the use of exhaust gas recirculation. The greater resistance to auto-ignition allows n-butanol to undergo a prolonged ignition delay for air-fuel mixing; the high volatility helps to enhance the cylinder charge homogeneity; the fuel-borne oxygen contributes to smoke reduction and, as a result, the smoke emissions of n-butanol combustion are generally at a near-zero level under the tested engine operating conditions.
Technical Paper

Study of Heat Release Shaping via Dual-Chamber Piston Bowl Design to Improve Ethanol-Diesel Combustion Performance

2017-03-28
2017-01-0762
In this work, an innovative piston bowl design that physically divides the combustion chamber into a central zone and a peripheral zone is employed to assist the control of the ethanol-diesel combustion process via heat release shaping. The spatial combustion zone partition divides the premixed ethanol-air mixture into two portions, and the combustion event (timing and extent) of each portion can be controlled by the temporal diesel injection scheduling. As a result, the heat release profile of ethanol-diesel dual-fuel combustion is properly shaped to avoid excessive pressure rise rates and thus to improve the engine performance. The investigation is carried out through theoretical simulation study and empirical engine tests. Parametric simulation is first performed to evaluate the effects of heat release shaping on combustion noise and engine efficiency and to provide boundary conditions for subsequent engine tests.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

2008-04-14
2008-01-1000
A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Preliminary Energy Efficiency Analyses of Diesel EGR Fuel Reforming with Flow Reversal and Central Fuelling

2007-10-29
2007-01-4035
The diesel fuel reforming process in an exhaust gas recirculation (EGR) loop of a diesel engine is capable of utilizing the engine exhaust energy to support the endothermic process of hydrogen gas generation. However, the EGR stream commonly needs to be heated to enable the operation of the reformer and thus to sustain higher yield of hydrogen. A central-fuelling and flow-reversal embedment that is energy-efficient to raise the central temperatures of the catalytic flow-bed is therefore devised and tested to drastically reduce the supplemental heating to the EGR reformer. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions. This research attempts to quantify the energy saving by the catalytic flow-reversal and central-fuelling embedment in comparison to a unidirectional flow EGR reformer.
Journal Article

Plasmonic in Metallic Nanostructures – Fabrication, Characterization and Applications in Surface-Enhanced Spectroscopy

2008-04-14
2008-01-1267
We are witnessing a rapid and ongoing expansion of nanoscience, driven by potential applications in advanced materials and nanotechnology. There is a race to develop techniques that may allow controlling the size, shape of nanostructures that can allow the tuning of their optical and electronic properties. Plasmonics is a field that encompasses and profits from the optical enhancement in nanostructures that support plasmon excitations. One of these new techniques is surface-enhanced Raman scattering (SERS), commonly used for nanostructure characterization. In the present report, we present a theoretical model for plasmon excitation and electric field enhancement that help to provide an explanation for the special features observed in experimental SERS. Two sets of experimental results are discussed illustrating the make out of the signature of the plasmonics producing the optical enhancement.
Technical Paper

Neat Biodiesel Fuel Engine Tests and Preliminary Modelling

2007-04-16
2007-01-0616
Engine performance and emission comparisons were made between the use of 100% soy, Canola and yellow grease derived biodiesel fuels and an ultra-low sulphur diesel fuel in the oxygen deficient regions, i.e. full or high load engine operations. Exhaust gas recirculation (EGR) was extensively applied to initiate low temperature combustion. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. The intake temperature, pressure, and EGR levels were modulated to improve the engine fuel efficiency and exhaust emissions. Furthermore, a preliminary ignition delay correlation under the influence of EGR was developed. Preliminary low temperature combustion modelling of the biodiesel and diesel fuels was also conducted. The research intends to achieve simultaneous reductions of nitrogen oxides and soot emissions in modern production diesel engines when biodiesel is applied.
Journal Article

Methods for Evaluating the Functional Work Space for Machine Tools and 6 Axis Serial Robots

2016-04-05
2016-01-0338
The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
Technical Paper

Low Temperature Combustion Strategies for Compression Ignition Engines: Operability limits and Challenges

2013-04-08
2013-01-0283
Low temperature combustion (LTC) strategies such as homogeneous charge compression ignition (HCCI), smokeless rich combustion, and reactivity controlled compression ignition (RCCI) provide for cleaner combustion with ultra-low NOx and soot emissions from compression-ignition engines. However, these strategies vary significantly in their implementation requirements, combustion characteristics, operability limits as well as sensitivity to boundary conditions such as exhaust gas recirculation (EGR) and intake temperature. In this work, a detailed analysis of the aforementioned LTC strategies has been carried out on a high-compression ratio, single-cylinder diesel engine. The effects of intake boost, EGR quantity/temperature, engine speed, injection scheduling and injection pressure on the operability limits have been empirically determined and correlated with the combustion stability and performance metrics.
Technical Paper

Kinematic Analysis of a 6DOF Gantry Machine

2015-04-14
2015-01-0497
Gantry robots are mainly employed for applications requiring large workspace, with limited higher manipulability in one direction than the others. The Gantries offer very good mechanical stiffness and constant positioning accuracy, but low dexterity. Common gantries are CNC machines with three translational joints XYZ (3DOF) and usually with an attached wrist (+3DOF). The translational joints are used to move the tool in any position in the 3D workspace. The wrist is used to orient the tool by rotation about X, Y and Z axis. This standard kinematic structure (3T3R) produces a rectangular workspace. In this paper a full kinematic model for a 6DOF general CNC (gantry) machine is presented, along with the Jacobian matrix and singularity analysis. Using Denavit-Hartenberg convention, firstly, the general kinematic structure is presented, in order to assign frames at each link. The forward kinematic problem is solved using Maple 17 software.
Technical Paper

Investigating Process Parameters and Microhardness Predictive Modeling Approaches for Single Bead 420 Stainless Steel Laser Cladding

2017-03-28
2017-01-0283
Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
Technical Paper

Influence of Biodiesel Fuel on Diesel Engine Performance and Emissions in Low Temperature Combustion

2006-10-16
2006-01-3281
The exhaust emission and performance characteristics of a 100% biodiesel fuel was evaluated on a single cylinder direct injection diesel engine that had been modified to allow multi-pulse diesel fuel injection at the intake port and independent control of intake heating, exhaust gas recirculation and throttling. Firstly, conventional single-shot direct injection tests were conducted and comparisons made between the use of an ultra-low sulphur diesel fuel and the biodiesel fuel. Secondly, tests for the premixed combustion of neat biodiesel were performed. Exhaust gas recirculation was applied extensively to initiate the low temperature combustion for the conventional in-cylinder single injection operation and to moderate the timing of the homogeneous charge compression ignition for the intake-port sequential injection. Because of the high viscosity and low volatility of the biodiesel, pilot-ignited homogeneous charge compression ignition was used.
Technical Paper

Improving Virtual Durability Simulation with Neural Network Modeling Techniques

2005-04-11
2005-01-0483
Neural networks are flexible modeling tools that can be used in conjunction with multi-body dynamics models to better predict nonlinear behaviour of components. This paper focuses on a process that incorporates a neural network model of a nonlinear damping force into a single degree of freedom mass-spring-damper model. Software tools and their interaction are specified. The verification of this process is the focal point of this paper and is a necessary step before further correlation studies can be performed on more complex component representations.
Journal Article

Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine

2015-04-14
2015-01-0808
This study investigated neat n-butanol combustion, emissions and thermal efficiency characteristics in a compression ignition (CI) engine by using two fuelling techniques - port fuel injection (PFI) and direct injection (DI). Diesel fuel was used in this research for reference. The engine tests were conducted on a single-cylinder four-stroke DI diesel engine with a compression ratio of 18.2 : 1. An n-Butanol PFI system was installed to study the combustion characteristics of Homogeneous Charge Compression Ignition (HCCI). A common-rail fuel injection system was used to conduct the DI tests with n-butanol and diesel. 90 MPa injection pressure was used for the DI tests. The engine was run at 1500 rpm. The intake boost pressure, engine load, exhaust gas recirculation (EGR) ratio, and DI timing were independently controlled to investigate the engine performance.
Journal Article

Impact of Fuel Properties on Diesel Low Temperature Combustion

2011-04-12
2011-01-0329
Extensive empirical work indicates that exhaust gas recirculation (EGR) is effective to lower the flame temperature and thus the oxides of nitrogen (NOx) production in-cylinder in diesel engines. Soot emissions are reduced in-cylinder by improved fuel/air mixing. As engine load increases, higher levels of intake boost and fuel injection pressure are required to suppress soot production. The high EGR and improved fuel/air mixing is then critical to enable low temperature combustion (LTC) processes. The paper explores the properties of the Fuels for Advanced Combustion Engines (FACE) Diesel, which are statistically designed to examine fuel effects, on a 0.75L single cylinder engine across the full range of load, spanning up to 15 bar IMEP. The lower cetane number (CN) of the diesel fuel improved the mixing process by prolonging the ignition delay and the mixing duration leading to substantial reduction of soot at low to medium loads, improving the trade-off between NOx and soot.
X