Refine Your Search

Topic

Search Results

Technical Paper

Transient Response of Minichannel Heat Exchanger Using Al2O3-EG/W Nanofluid

2016-04-05
2016-01-0229
A numerical study is performed to investigate the transient heat transfer and flow characteristics of aluminum oxide (Al2O3) nanoparticles dispersed in 50:50 ethylene glycol/water (EG/W) base fluid in a multipass crossflow minichannel heat exchanger. The time dependent thermal responses of the system in a laminar regime are predicted by solving the conservation equations using the finite volume method and SIMPLE algorithm. The transient regime is caused by a step change of nanofluid mass flow rate at the inlet of the minichannel heat exchanger. This step change can be analogous with a thermostat operation. In this study, three volume fractions up to 3 percent of Al2O3 nanoparticles dispersed to the base fluid EG/W are modeled and analyzed. In the numerical simulation, Al2O3-EG/W nanofluid is considered as a homogenous single-phase fluid. An analysis of the transient response for the variation of nanofluids volume concentrations is conducted.
Technical Paper

The University of Windsor - St. Clair College E85 Silverado

2001-03-05
2001-01-0680
The fuel called E-85 can be burned effectively in engines similar to the engines currently mass-produced for use with gasoline. Since the ethanol component of this fuel is produced from crops such as corn and sugar cane, the fuel is almost fully renewable. The different physical and chemical properties of E-85, however, do require certain modifications to the common gasoline engine. The Windsor - St. Clair team has focused their attention to modifications that will improve fuel efficiency and reduce tailpipe emissions. Other modifications were also performed to ensure that the vehicle would still operate with the same power and driveability as its gasoline counterpart.
Journal Article

Suitability Assessment of an Uncalibrated Body Force Based Fan Modeling Approach to Predict Automotive Underhood Airflows

2021-04-06
2021-01-0820
The automotive fan is a critical component of the cooling module, providing the majority of the cooling airflow over the heat exchangers and to underbody components at low speed, idle, and key-off conditions. Accurately predicting the performance of the automotive cooling fan is critical for sizing heat exchangers and ensuring that underhood and underbody components remain below target temperatures. This is normally done with computational fluid dynamics, but in a full-vehicle simulation it is impractical to model the rotation of the fan blades using a sliding mesh approach. Thus, simplified models which capture the fan behavior are employed. In this paper, a body force-type fan modeling approach is adopted and assessed. Many industrial fan models are calibrated based on experiments or higher-fidelity simulations. This can slow the design process. The approach employed eliminates this step, requiring only fan geometry information and no a-priori performance data.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

2008-04-14
2008-01-1000
A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

Oxygenated Fuels as Reductants for Lean NOx Trap Regeneration

2024-04-09
2024-01-2132
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Numerical Investigation of Active and Passive Cooling Systems of a Lithium-Ion Battery Module for Electric Vehicles

2016-04-05
2016-01-0655
In this work, a pseudo three-dimensional coupled thermal-electrochemical model is established to estimate the heat generation and temperature profiles of a lithium ion battery as functions of the state of the discharge. Then, this model is used to investigate the effectiveness of active and passive thermal management systems. The active cooling system utilizes cooling plate and water as the working fluid while the passive cooling system incorporates a phase change material (PCM). The thermal effects of coolant flow rate examined using a computational fluid dynamics model. In the passive cooling system, Paraffin wax used as a heat dissipation source to control battery temperature rise. The effect of module size and battery spacing is studied to find the optimal weight of PCM required. The results show that although the active cooling system has the capability to reduce the peak temperatures, it leads to a large temperature difference over the battery module.
Technical Paper

New MAC Technologies: Fuel Efficiency Effect in Real Driving of the Air Intake Flap Management

2015-04-14
2015-01-1609
Following the development of new technologies in Vehicle Thermal Management aiming to both enhancing the MAC System efficiency and reducing the thermal load to be managed, a prediction tool based on the AMEsim platform was developed at Advanced PD EMEA. This tool is dedicated to predict the effect of the implementation of sensors monitoring both the relative humidity and the carbon dioxide (CO2) concentration (taking into account passengers' generated moisture and CO2). This model implemented with the usual comfort inputs (CO2 and RH acceptable ranges) considers the system variables influencing the comfort and predicts the increase of both RH and CO2 concentration in the cabin compartment in any driving cycle depending on the number of occupants.
Technical Paper

Lumped Parameter Thermal Network Modeling for Online Temperature Prediction of Permanent Magnet Synchronous Motor for Different Drive Cycles in Electric Vehicle Applications

2020-04-14
2020-01-0455
Electric vehicle is increasingly becoming popular and an alternative choice for the consumers because of its environment-friendly operation. Permanent magnet synchronous machines are widely and commonly used as traction motors since they provide higher torque and power density. High torque and power density mean higher current which eventually causes higher temperature rise in the motor. Higher temperature rise directly affects the motor output. Standard tests for UDDS (Urban Dynamometer Driving Schedule) and HWFET (Highway Fuel Economy Driving Schedule) drive cycles are used to determine performance of traction motors in terms of torque, power, efficiency and thermal health. Traction motors require high torque at low speed for starting and climbing; high power at high speed for cruising; wide speed range; a fast torque response; high efficiency over wide torque and speed ranges and high reliability.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

Investigation of Flame Detachment Effect during Early Flame Development in a Swirl Flow Field

2021-04-06
2021-01-0482
Lean burn is regarded as one of the most effective ways to improve fuel efficiency for spark ignition engines. However, the excessive air dilution deteriorates combustion stability, limiting the degree of engine operational dilution. The intensified flow field is therefore introduced into the cylinder to mitigate the decline of the burning velocity caused by the leaned-out fuel-air mixture. In a moderate flow field, flame kernels are formed near the hot spark plasma during discharge and stick to the spark gap even after the end of discharge; the flame front then propagates outward and evolves into self-sustained flame. Flame attaching to the spark gap is a common phenomenon in the early combustion stage and has been reported to be beneficial for flame inception in the literature.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
Technical Paper

Ignition Improvement of Premixed Methane-Air Mixtures by Distributed Spark Discharge

2015-09-01
2015-01-1889
In order to improve the fuel economy for future high-efficiency spark ignition engines, the use of advanced combustion strategies with an overall lean and/or exhaust gas recirculation diluted cylinder charge is deemed to be beneficial, provided a reliable ignition process available. In this paper, experimental results of igniting methane-air mixture by means of capacitive coupled ignition and multi-coil distributed spark ignition are presented. It is found that with a conventional spark plug electrode configuration, increase of spark energy does not proportionally enhance the ignition flame kernel development. The use of capacitive coupled ignition to enhance the initial transient power resulted in faster kernel growth compared to the conventional system. The distribution of the spark energy across a number of spark gaps shows considerable benefit.
Journal Article

Heat Release Pattern Diagnostics to Improve Diesel Low Temperature Combustion

2008-06-23
2008-01-1726
Empirical results indicated that the engine emission and fuel efficiency of low-temperature combustion (LTC) cycles can be optimized by adjusting the fuel-injection scheduling in order to obtain appropriate combustion energy release or heat-release rate patterns. Based on these empirical results the heat-release characteristics were correlated with the regulated emissions such as soot, hydrocarbon and oxides of nitrogen. The transition from conventional combustion to LTC with the desired set of heat-release rate has been implemented. This transition was facilitated with the simplified heat-release characterization wherein each of the consecutive engine cycles was analyzed with a real-time controller embedded with an FPGA (field programmable gate array) device. The analyzed results served as the primary feedback control signals to adjust fuel injection scheduling. The experimental efforts included the boost/backpressure, exhaust gas recirculation, and load transients in the LTC region.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

2008-10-06
2008-01-2472
Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Technical Paper

Energy Efficiency Analysis of Active-flow Operations in Diesel Engine Aftertreatment

2006-10-16
2006-01-3286
Experiments are carried out with the diesel particulate filter and oxidation catalyst embedded in the active-flow configurations on a single cylinder diesel engine. The combined use of various active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to favorable windows for filtration, conversion, and regeneration processes. Empirical and theoretical investigations are performed with a transient one-dimensional single channel aftertreatment model developed in FORTRAN and MATLAB. The influence of the supplemental energy distribution along the length of aftertreatment device is evaluated. The theoretical analysis indicates that the active-flow control schemes have fundamental advantages in optimizing the converter thermal management including reduction in supplemental heating, increase in thermal recuperation, and improving overheating protection.
Technical Paper

Energy Efficiency Analysis between In-cylinder and External Supplemental Fuel Strategies

2007-04-16
2007-01-1125
Preliminary empirical and modeling analyses are conducted to evaluate the energy efficiency of in-cylinder and external fuel injection strategies and their impact on the energy required to enable diesel particulate filter (DPF) regeneration for instance. During the tests, a thermal wave that is generated from the engine propagates along the exhaust pipe to the DPF substrate. The thermal response of the exhaust system is recorded with the thermocouple arrays embedded in the exhaust system. To implement the external fuel injection, an array of thermocouples and pressure sensors in the DPF provide the necessary feedback to the control system. The external fuel injection is dynamically adjusted based on the thermal response of the DPF substrate to improve the thermal management and to reduce the supplemental energy. This research intends to quantify the effectiveness of the supplemental energy utilization on aftertreatment enabling.
Technical Paper

Empirical and Theoretical Investigations of Active-flow Control on Diesel Engine After-treatment

2006-04-03
2006-01-0465
Empirical and theoretical studies are made between active-flow control and passive-flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and substrate properties. The exhaust active-flow control includes the parallel alternating flow, partial restricting flow, periodic flow reversal, and extended flow stagnation that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive-flow converters [1, 2]. The tests are set up on a single cylinder Yanmar engine. Theoretical studies are performed with the one-dimensional transient modeling techniques to analyze the thermal behavior of the diesel after-treatment systems when active flow control schemes are applied.
X