Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Preliminary Energy Efficiency Analyses of Diesel EGR Fuel Reforming with Flow Reversal and Central Fuelling

The diesel fuel reforming process in an exhaust gas recirculation (EGR) loop of a diesel engine is capable of utilizing the engine exhaust energy to support the endothermic process of hydrogen gas generation. However, the EGR stream commonly needs to be heated to enable the operation of the reformer and thus to sustain higher yield of hydrogen. A central-fuelling and flow-reversal embedment that is energy-efficient to raise the central temperatures of the catalytic flow-bed is therefore devised and tested to drastically reduce the supplemental heating to the EGR reformer. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions. This research attempts to quantify the energy saving by the catalytic flow-reversal and central-fuelling embedment in comparison to a unidirectional flow EGR reformer.
Technical Paper

Heat Release Based Adaptive Control to Improve Low Temperature Diesel Engine Combustion

Heat-release and cylinder pressure based adaptive fuel-injection control tests were performed on a modern common-rail diesel engine to improve the engine operation in the low-temperature combustion (LTC) region. A single shot injection strategy with heavy amount of exhaust gas recirculation (EGR) was used to modulate the in-cylinder charge conditions to achieve the low-temperature combustion. Adaptive fuel-injection techniques were used to anchor the cylinder pressure characteristics in the desired crank angle window and thereby stabilize the engine operation. The response of the adaptive control to boost, fueling, and engine speed variations was also tested. A combination of adaptive fuel-injection and automatic boost/back-pressure controls had helped to make the transient emissions comparable to the steady-state LTC emissions.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Technical Paper

Energy Efficiency Analysis between In-cylinder and External Supplemental Fuel Strategies

Preliminary empirical and modeling analyses are conducted to evaluate the energy efficiency of in-cylinder and external fuel injection strategies and their impact on the energy required to enable diesel particulate filter (DPF) regeneration for instance. During the tests, a thermal wave that is generated from the engine propagates along the exhaust pipe to the DPF substrate. The thermal response of the exhaust system is recorded with the thermocouple arrays embedded in the exhaust system. To implement the external fuel injection, an array of thermocouples and pressure sensors in the DPF provide the necessary feedback to the control system. The external fuel injection is dynamically adjusted based on the thermal response of the DPF substrate to improve the thermal management and to reduce the supplemental energy. This research intends to quantify the effectiveness of the supplemental energy utilization on aftertreatment enabling.
Technical Paper

Diesel EGR Fuel Reformer Improvement with Flow Reversal and Central Fueling

Empirical work has been conducted with an EGR fuel reformer configured in a flow reversal and central fueling embedment to improve the fuel dispersion quality and the reforming energy efficiency. Comprehensive comparison analyses are made between the unidirectional flow and the periodic reversal flow embodiments of similar substrate size and properties; and between the inlet and central heating schemes. With a unidirectional EGR reformer, a large amount of supplemental heating is commonly required prior to reforming. The central-fueling and flow-reversal embedment in this study is shown to significantly reduce the supplemental heating energy. The EGR cooler loading for the two strategies is also analyzed. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Technical Paper

A Thermal Response Analysis on the Transient Performance of Active Diesel Aftertreatment

Diesel fueling and exhaust flow strategies are investigated to control the substrate temperatures of diesel aftertreatment systems. The fueling control includes the common-rail post injection and the external supplemental fuel injection. The post injection pulses are further specified at the early, mid, or late stages of the engine expansion stroke. In comparison, the external fueling rates are moderated under various engine loads to evaluate the thermal impact. Additionally, the active-flow control schemes are implemented to improve the overall energy efficiency of the system. In parallel with the empirical work, the dynamic temperature characteristics of the exhaust system are simulated one-dimensionally with in-house and external codes. The dynamic thermal control, measurement, and modeling of this research intend to improve the performance of diesel particulate filters and diesel NOx absorbers.