Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Split-Spray Piston Geometry Optimized for HSDI Diesel Engine Combustion

2003-03-03
2003-01-0348
A combustion chamber geometry design optimization study has been performed on a high-speed direct-injection (HSDI) automotive diesel engine at a part-load medium-speed operating condition using both modeling and experiments. A model-based optimization was performed using the KIVA-GA code. This work utilized a newly developed 6-parameter automated grid generation technique that allowed a vast number of piston geometries to be considered during the optimization. Other salient parameters were included that are known to have an interaction with the chamber geometry. They included the start of injection (SOI) timing, swirl ratio (SR), exhaust gas recirculation percentage (EGR), injection pressure, and the compression ratio (CR). The measure of design fitness used included NOx, soot, unburned hydrocarbon (HC), and CO emissions, as well as the fuel consumption. Subsequently, an experimental parametric study was performed using the piston geometry found by the numerical optimization.
Technical Paper

Methods and Results from the Development of a 2600 Bar Diesel Fuel Injection System

2000-03-06
2000-01-0947
An ultrahigh injection pressure, common rail fuel injection system was designed, fabricated, and evaluated. The result was a system suitable for high-power density diesel engine applications. The main advantages of the concept are a very short injection duration capability, high injection pressure independent of engine speed, a simplified electronic control valve, and good packaging flexibility. Two prototype injectors were developed. Tests were performed on an injector flow bench and in a single cylinder research engine. The first prototype delivered 320 mm3 within 2.5 milliseconds with a 2600 bar peak injection pressure. A conventional minisac nozzle was used. The second prototype employed a specially designed pintle nozzle producing a near-zero cone angle liquid jet impinging on a 9-mm cylindrical target centered on the piston bowl crown (OSKA-S system). The second prototype had the capability to deliver 316mm3 in 0.97ms.
X