Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Very High Cycle Fatigue of Cast Aluminum Alloys under Variable Humidity Levels

2015-04-14
2015-01-0556
Ultrasonic fatigue tests (testing frequency around 20 kHz) have been conducted on four different cast aluminum alloys each with a distinct composition, heat treatment, and microstructure. Tests were performed in dry air, laboratory air and submerged in water. For some alloys, the ultrasonic fatigue lives were dramatically affected by the environment humidity. The effects of different factors like material composition, yield strength, secondary dendrite arm spacing and porosity were investigated; it was concluded that the material strength may be the key factor influencing the environmental humidity effect in ultrasonic fatigue testing. Further investigation on the effect of chemical composition, especially copper content, is needed.
Technical Paper

Validation of the Generalized RNG Turbulence Model and Its Application to Flow in a HSDI Diesel Engine

2012-04-16
2012-01-0140
A generalized re-normalization group (RNG) turbulence model based on the local "dimensionality" of the flow field is proposed. In this modeling approach the model coefficients C₁, C₂, and C₃ are all constructed as functions of flow strain rate. In order to further validate the proposed turbulence model, the generalized RNG closure model was applied to model the backward facing step flow (a classic test case for turbulence models). The results indicated that the modeling of C₂ in the generalized RNG closure model is reasonable, and furthermore, the predictions of the generalized RNG model were in better agreement with experimental data than the standard RNG turbulence model. As a second step, the performance of the generalized RNG closure was investigated for a complex engine flow.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Journal Article

Validation Metric for Dynamic System Responses under Uncertainty

2015-04-14
2015-01-0453
To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
Technical Paper

Using Dynamic Modular Diesel Engine Models To Understand System Interactions and Performance

1999-03-01
1999-01-0976
This paper reviews the engine modeling program in the Powertrain Control Research Laboratory at the University of Wisconsin-Madison, focuses on simulation results obtained from a complete modular turbocharged diesel engine dynamic model developed in this lab, and suggests ways that dynamic engine system models can be used in the design process. It examines the dynamic responses and interactions between various components in the engine system, looks at how these components affect the overall performance of the system in transient and steady state operation.
Technical Paper

Ultrasonic Cavitation Based Casting of Aluminum Matrix Nanocomposites for Automobile Structures

2006-04-03
2006-01-0290
The properties of aluminum alloys reinforced by ceramic nanoparticles (less than 100nm) would be enhanced considerably while the ductility is retained over that of the native alloy. The potential of bulk Al-based metal matrix nano-composites (Al MMNCs) cannot be fully developed for industrial applications unless complex structural Al MMNC components can be fabricated cost effectively, such as by casting. Reliable bulk Al MMNCs cannot be cast unless the nanoparticles can be dispersed and distributed uniformly in molten Al alloys. This paper investigates a high volume production method for high performance aluminum matrix nanocomposites, in particular, the application of high intensity ultrasonic cavitation in mixing and dispersing nano-sized ceramic particles in Al melts to cast bulk Al MMNCs for complex automobile structures. Nano-sized SiC particles have been dispersed in molten aluminum alloy A356 for casting.
Technical Paper

Traffic State Identification Using Matrix Completion Algorithm Under Connected and Automated Environment

2021-12-15
2021-01-7004
Traffic state identification is a key problem in intelligent transportation system. As a new technology, connected and automated vehicle can play a role of identifying traffic state with the installation of onboard sensors. However, research of lane level traffic state identification is relatively lacked. Identifying lane level traffic state is helpful to lane selection in the process of driving and trajectory planning. In addition, traffic state identification precision with low penetration of connected and automated vehicles is relatively low. To fill this gap, this paper proposes a novel method of identifying traffic state in the presence of connected and automated vehicles with low penetration rate. Assuming connected and automated vehicles can obtain information of surrounding vehicles’, we use the perceptible information to estimate imperceptible information, then traffic state of road section can be inferred.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

The Measurement of Impact Forces under Dynamic Crush using a Drop Tower Test Facility

1983-02-01
830467
The design of structural components requires a knowledge of their crush characteristics, particularly the load-carrying capacity during dynamic crash. Although many attempts have been made to develop analytical techniques or methods for predicting these characteristics, experimental tests are still needed to provide data for real structures for either development or validation. This report describes an experimental method for determining the force-deflection characteristics during dynamic crush of square steel columns using a drop tower test facility. The custom-designed load cells were used for the measurements of the impact and the reaction forces at both ends of specimens, which were subjected to a 30 mph impact. Instrumentation for data acquisition and detailed data reduction for analysis are also presented.
Technical Paper

The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D.I. Diesel Engine

1999-03-01
1999-01-0840
An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE) was used to study diesel combustion. The SCOTE retains the port, combustion chamber, and injection geometry of the production six cylinder, 373 kW (500 hp) 3406E heavy-duty truck engine. The engine was equipped with an electronic unit injector and an electronically controlled common rail injector that is capable of multiple injections. An emissions investigation was carried out using a six-mode cycle simulation of the EPA Federal Transient Test Procedure. The results show that the SCOTE meets current EPA mandated emissions levels, despite the higher internal friction imposed by the single-cylinder configuration. NOx versus particulate trade-off curves were generated over a range of injection timings for each mode and results of heat release calculations were examined, giving insight into combustion phenomena in current “state of the art” heavy-duty diesel engines.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Technical Paper

The Development of the University of Wisconsin's Parallel Hybrid-Electric Aluminum Intensive Vehicle

1999-03-01
1999-01-0613
For competition in the 1998 FutureCar Challenge (FCC98), the University of Wisconsin - Madison FutureCar Team has designed and built a lightweight, charge sustaining, parallel hybrid electric vehicle by modifying a 1994 Mercury Sable Aluminum Intensive Vehicle (AIV), nicknamed the Aluminum Cow. The Wisconsin team is striving for a combined, FTP cycle gasoline-equivalent fuel economy of 21.3 km/L (50 mpg) and Ultra Low Emissions Vehicle (ULEV) federal emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a full-size car. To reach these goals, Wisconsin has concentrated on reducing the overall vehicle weight. In addition to customizing the drivetrain, the team has developed a vehicle control strategy that both aims to achieve these goals and also allows for the completion of a reliable hybrid in a short period of time.
Technical Paper

The Development of Vehicular Powertrain System Modeling Methodologies: Philosphy and Implementation

1997-02-24
971089
Simulation is a useful tool which can significantly reduce resources invested during product development. Vehicle manufacturers are using simulations to aid in the evaluation of designs and components, including powertrain systems and controllers. These simulations can be made more useful by addressing issues such as flexibility, modularity, and causality. These issues and other aspects involved in the development and use of powertrain system simulations are discussed in this paper, and a case study of a powertrain system model developed in the PCRL using methodologies based on considerations of such issues is presented.
Technical Paper

The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation

1995-02-01
950278
An integrated numerical model has been developed for diesel engine computations based on the KIVA-II code. The model incorporates a modified RNG k-ε, turbulence model, a ‘wave’ breakup spray model, the Shell ignition model, the laminar-and-turbulent characteristic-time combustion model, a crevice flow model, a spray/wall impingement model that includes rebounding and breaking-up drops, and other improved submodels in the KIVA code. The model was validated and applied to model successfully different types of diesel engines under various operating conditions. These engines include a Caterpillar engine with different injection pressures at different injection timings, a small Tacom engine at different loads, and a Cummins engine modified by Sandia for optical experiments. Good levels of agreement in cylinder pressures and heat release rate data were obtained using the same computer model for all engine cases.
Technical Paper

Studying the Roles of Kinetics and Turbulence in the Simulation of Diesel Combustion by Means of an Extended Characteristic-Time-Model

1999-03-01
1999-01-1177
A study was performed that takes into account both turbulence and chemical kinetic effects in the numerical simulation of diesel engine combustion in order to better understand the importance of their respective roles at changing operating conditions. An approach was developed which combines the simplicity and low computational and storage requests of the laminar-and-turbulent characteristic-time model with a detailed combustion chemistry model based on well-known simplified mechanisms. Assuming appropriate simplifications such as steady state or equilibrium for most of the radicals and intermediate species, the kinetics of hydrocarbons can be described by means of three overall steps. This approach was integrated in the KIVA-II code. The concept was validated and applied to a single-cylinder, heavy-duty engine. The simulation covers a wide range of operating conditions.
Technical Paper

Study the Relationship between CP Specimen Width and the Stress Intensity Factor Value around Nugget

2015-04-14
2015-01-0553
SIF value around weld nugget changes when specimen width is different. To investigate the influence of specimen width on SIF value around weld nugget of coach peel specimen (CP), a finite element model was established in this paper. In this model, a contour integral crack was used, and the area around the nugget was treated as crack tip. Results indicated that when specimen width was below 50mm, SIF decreased rapidly with the increase of specimen width. When specimen width was larger than 50mm, SIF almost remained constant with the variation of specimen width. To further study the influences of nugget diameter and sheet thickness on the Width-SIF curves, CP specimens with different nugget diameters (5mm, 6mm and 7mm) and sheet thicknesses (1.2mm, 1.6mm and 2.0mm) were established in ABAQUS. Simulation results of all CP specimens showed a similar relationship between specimen width and SIF.
Technical Paper

Spectral Characteristics of Turbulent Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1993-03-01
930924
An experimental investigation of the spectral characteristics of turbulent flow in a scale model of a high pressure diesel fuel injector nozzle hole has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of an injector nozzle using an Aerometrics Phase/Doppler Particle Analyzer (PDPA) in the velocity mode. Turbulence spectra were calculated from the velocity data using the Lomb-Scargle method. Injector hole length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Results were obtained for a steady flow average Reynolds number of 10,500, which is analogous to a fuel injection velocity of 320 m/s and a sac pressure of approximately 67 MPa (10,000 psi). Turbulence time frequency spectra were obtained for significant locations in each geometry, in order to determine how geometry affects the development of the turbulent spectra.
Technical Paper

Sheet Forming with Pulsating Blankholder Modeling and Experiments

1999-09-28
1999-01-3157
Robust processing window and subsequent quality of part are major concerns during sheet metal stamping. The sheet restraining force is a key parameter controlling metal flow, thus influencing formability and quality of the resulting part. Recent advances in press and die building provided capability of altering the restraining force (RF) during a stamping stroke via pulsating blankholder force (PBF). An outcome of this technology would be an increase in the maximum drawing depth resulting from a decrease in the average blankholder force. In this study, laboratory and numerical experiments were performed in an effort to better understand the effect of various PBF trajectories on stamping performance. A working numerical model using explicit code was successfully developed for time effective simulation of drawn cups with pulsating binder force. Preliminary results of this ongoing project are presented. The pulsating force trajectory was found to have a beneficial effect on drawability.
Technical Paper

Select Strength Steel Bumper System

1983-02-01
830397
The SS Bumper is a new concept in automobile systems that achieves a very significant weight reduction in steel bumper construction and is capable of meeting the 5 mph FMVSS U.S. Government impact standard. It offers a low cost method of achieving a double digit weight reduction with no cost premium for aluminum or plastic materials. This paper concentrates on describing the configuration of the SS Bumper and a simple, easy to apply procedure for car application which includes discrete equations for bending strengths, torsional strength and the new dent strength relationships which have been recently developed. One version of the SS Bumper applied to the 1983 Thunderbird is also described.
Technical Paper

Resistance Spot Welding (RSW) Evaluation of Electro Galvanized (EG) 1.0 mm Dual Phase 780 (DP780) to Uncoated 1.0 mm Boron Steel for Automotive Body Structure Applications

2010-04-12
2010-01-0445
There has been a substantial increase in the use of advanced high strength steel (AHSS) in automotive structures in the last few years. The usage of these materials is projected to grow significantly in the next 5-10 years with the introduction of new safety and fuel economy regulations. AHSS are gaining popularity due to their superior mechanical properties and use in parts for weight savings potential, as compared to mild steels. These new materials pose significant manufacturing challenges, particularly for welding and stamping. Proper understanding of the weldability of these materials is critical for successful application on future vehicle programs. Due to the high strength nature of AHSS materials, higher weld forces and longer weld times are often needed to weld these advanced strength steels.
X