Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

xD+1D Catalyst Simulation-A Numerical Study on the Impact of Pore Diffusion

2012-04-16
2012-01-1296
This paper presents a numerical study on the impact of washcoat diffusion on the overall conversion performance of catalytic converters. A comprehensive transient 1D pore diffusion reaction model is embedded in state-of-the-art 1D and 3D catalytic converter models. The pore diffusion model is discussed with its model equations and the applied diffusive transport approaches are summarized. The diffusion reaction model is validated with the help of two available analytical solutions. The impact of basic washcoat characteristics such as pore diameters or thickness on overall conversion performance is investigated by selected 1D+1D calculations. This model is also used to highlight the impact of boundary layer transfer, pore diffusion and reaction on the overall converter conversion performance. The interaction of pore diffusion and flow non-uniformities is demonstrated by 3D+1D CFD simulations.
Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Technical Paper

Wet Clutch Drag Loss Simulation for Different Clutch Patterns

2022-08-30
2022-01-1118
Wet clutches drag loss simulation is essentially linked to the clutch friction surface patterns in addition to the main geometry and conditions of the interface (relative speed, separation, inner and outer radius, viscosity and boundary pressures). The clutch patterns promote cooling flow and micro-hydrodynamic effects to aid clutch separation but greatly complicate the simulation of drag loss during separation. These drag losses are important in understanding the system losses as well as finding the most effective clutch cooling strategy. Typical clutch models either only consider simple patterns, such as radial grooves, or require significant simulation efforts to evaluate. Additionally, many simple models require calibration to measurement of the actual clutch they try to model before they provide a useful model.
Technical Paper

Virtual Optimization of Race Engines Through an Extended Quasi Steady State Lap Time Simulation Approach

2018-04-03
2018-01-0587
Minimizing the lap time for a given race track is the main target in racecar development. In order to achieve the highest possible performance of the vehicle configuration the mutual interaction at the level of assemblies and components requires a balance between the advantages and disadvantages for each design decision. Especially the major shift in the focus of racecar powerunit development to high efficiency powertrains is driving a development of lean boosted and rightsized engines. In terms of dynamic engine behavior the time delay from requested to provided torque could influence the lap time performance. Therefore, solely maximizing the full load behavior objective is insufficient to achieve minimal lap time. By means of continuous predictive virtual methods throughout the whole development process, the influence on lap time by dynamic power lags, e.g. caused by the boost system, can be recognized efficiently even in the early concept phase.
Technical Paper

Viability of Alternative Fuels to Decarbonize the World’s Largest Agricultural Tractor Market

2024-01-16
2024-26-0065
India is the market with the highest sales of agricultural tractors and the market with the highest number of agricultural tractor park, as well. Even though taking into account the lower average power of Indian agricultural tractors compared to regions with considerably larger field sizes, their cumulated diesel fuel consumption reaches a significant size. The possible use of alternative powertrains like battery-electric, especially considering the lower power of the Indian tractor market, seems feasible, but might be struggling with challenges in terms of charging infrastructure and the possibly resulting lower productivity due to required charging times. Therefore AVL proposes to investigate the use of alternative fuels for internal combustion engines, a topic which is also being discussed by other global tractor OEMs. In that context the focus is typically on higher tractor powers due to current storage limitations of battery-electric systems and other alternatives.
Technical Paper

Verification and Validation for Modular Development Platforms

2023-04-11
2023-01-0476
As electrified powertrains trends towards the new norm in development, the need to consider modular development approaches becomes more prevalent. Modular system developments seek to offer an adaptable product range by considering each system component (transmission, e-motor, inverter, battery, etc.) and system element (park-lock, disconnect, differential, etc.) as interchangeable. This can result in a lower cost development process overall to increase the returns for tier1 suppliers by expanding the marketability of the platform. Such an approach has hitherto held relatively low commercial interest as the rate of technological advancement negated the benefits of a modular development due to the lack of long-term competitivity. Previously large technological advances between successive productions and the relatively limited EV market, centred around SUV and small car applications, reduced the value in committing to a platform development.
Technical Paper

Vehicle Thermal Management Simulation Method Integrated in the Development Process from Scratch to Prototype

2014-04-01
2014-01-0668
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Furthermore the increasing number of vehicle configurations leads to a high variability and degrees of freedom in possible system designs and the control thereof, which can only be handled by a comprehensive tool chain of vehicle system simulation and a generic control system architecture. The required model must comprise all relevant systems of the vehicle (control functionality, cooling system, lubrication system, engine, drive train, HV components etc.). For proper prediction with respect to energy consumption all interactions and interdependencies of those systems have to be taken into consideration, i.e. all energy fluxes (mechanical, hydraulically, electrical, thermal) have to be exchanged among the system boundaries accordingly.
Technical Paper

Vehicle Sound Engineering by Modifying Intake / Exhaust Orifice Noise Using Simulation Software

2003-05-05
2003-01-1686
Apart of other aspects, the interior sound of a passenger car brand has to meet customer expectations. For optimizing the sound of a passenger car, target sounds have first to be established via the operating range of the vehicle. For an effective sound engineering approach an objective description and evaluation of vehicle interior sound is beneficial. Such an objective description guarantees the effective and reproducible implementation of the required brand sound in the vehicle development process. In such a process it is necessary to reduce on the one hand annoying undesired noise aspects and to create on the other hand the relevant and necessary noise parameters to meet the target sounds head on.
Technical Paper

Vehicle Class Based Validation Program for Electrified Powertrain Vibration Testing

2023-04-11
2023-01-0920
Vibration testing is common in automotive industry validation and gains greater significance with increasing numbers of electrical components, which are particularly suspectable to vibration related failures. While the nature and intention of vibration testing is common, many contradicting testing standards claim to be a one-size-fits-all solution, leading to questions of which standard is correct for any specific application. This is compounded by the vast variation in vehicle types and applications (suspension systems, dampers, powertrain mass, tire radius, intended usage, etc.) This paper seeks to offer and demonstrate a method to determine characteristic vibration profiles, based on vehicle classes, and illuminate the process to accelerate these to an appropriate test profile. This can either be used to directly validate a system or to support the selection of the most appropriate vibration profile from options within standards.
Technical Paper

Validation of Powertrain Systems Based on Usage Space Analysis Considering Virtual Road Load Profiles

2024-04-09
2024-01-2424
Validation of powertrain systems is nowadays performed with specific durability relevant load cycles, which represent the lifetime requirement of individual powertrain components. The definition of such durability relevant load cycles, which are used for vehicle testing should ideally be based on the actual vehicle's usage. Recording driving cycles within a vehicle is one of the most typical ways of collecting vehicle usage and relevant end customer behavior, but the generation of such measured vehicle data can be time consuming. In addition, this method of capturing on-road measurements has limitations in the variation of vehicle loadings (e.g., number of passengers, luggage, trailer usage etc.). Especially for new applications, entering new target markets, these kinds of in-vehicle measurements are not possible in early development stages, as the required vehicle or powertrain configuration is not available in hardware or incapable of measurements.
Technical Paper

Validating an Approach to Assess Sensor Perception Reliabilities Without Ground Truth

2021-04-06
2021-01-0080
A reliable environment perception is a requirement for safe automated driving. For evaluating and demonstrating the reliability of the vehicle’s environment perception, field tests offer testing conditions that come closest to the vehicle’s driving environment. However, establishing a reference ground truth in field tests is time-consuming. This motivates the development of a procedure for learning the vehicle’s perception reliability from fleet data without the need for a ground truth, which would allow learning the perception reliability from fleet data. In Berk et al. (2019), a method based on Bayesian inference to determine the perception reliability of individual sensors without the need for a ground truth was proposed. The model utilizes the redundancy of sensors to learn the sensor’s perception reliability. The method was tested with simulated data.
Journal Article

Use of a Catalytic Stripper as an Alternative to the Original PMP Measurement Protocol

2013-04-08
2013-01-1563
The Particle Measurement Programme (PMP) developed an exhaust particle number measurement protocol that has been adopted by current light duty vehicle emission regulations in Europe. This includes thermal treatment of the exhaust aerosol to isolate solid particles only and a number counting device with a lower cutpoint of 23 nm to avoid measurement of smaller particles that may affect the repeatability of the measurement. In this paper, we examine a potential alternative to the PMP system, where the thermal treatment is replaced by a catalytic stripper (CS). This offers oxidation and not just evaporation of the volatile components. Alternative sampling systems, either fulfilling the PMP recommendations or utilizing a CS, have been explored in terms of their volatile particle removal efficiency. Tests have been conducted on diesel exhaust, diesel equipped with DPF and gasoline direct injection emissions.
Journal Article

Turbocharger Noise Quality Parameters for Efficient TC Noise Assessment and Refinement

2016-06-15
2016-01-1817
Due to more challenging future emission legislations and the trend towards downsizing, the number of turbocharged (TC) engines, especially petrol engines, is steadily increasing. The usage of TC has high risk to cause different noise phenomena apparent in the vehicle interior which are often perceived as annoying for the passengers. In order to further improve consideration of TC topics in the development, objective judgment and monitoring of TC noise issues is of high importance. Therefore, objective parameters and corresponding tools that are especially focusing on TC noise phenomena have to be developed. One main target of these tools is to deliver an objective TC assessment in an efficient way and with minimum additional effort. Application of the criteria presented in this publication therefore allows acoustic engineers to judge the NVH behavior and annoyance of the TC with respect to its vehicle interior noise contribution.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Journal Article

Towards Brand-Independent Architectures, Components and Systems for Next Generation Electrified Vehicles Optimised for the Infrastructure

2022-03-29
2022-01-0918
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Still, major challenges for large scale deployment remain. They include higher maturity with respect to performance (e.g., range, interaction with the grid), development efficiency (e.g., time-to-market), or production costs. Additionally, an important market transformation currently occurs with the co-development of automated driving functions, connectivity, mobility-as-a-service. New opportunities arise to customize road transportation systems toward application-driven, user-centric smart mobility solutions.
Technical Paper

Tool Based Calibration with the OBDmanager

2010-04-12
2010-01-0249
At the moment the documentation of failure inhibition matrices and the fault path management for different controller types and different vehicle projects are mainly maintained manually in individual Excel tables. This is not only time consuming but also gives a high potential for fault liability. In addition there is also no guarantee that the calibration of these failure inhibition matrices and its fault path really works. Conflicting aims between costs, time and fault liability require a new approach for the calibration, documentation and testing of failure inhibition matrices and the complete Diagnostic System Management (DSM) calibration. The standardization and harmonization of the Diagnostic System Management calibration for different calibration projects and derivates is the first step to reduce time and costs. Creating a master calibration for the conjoint fault paths and labels provides a significant reduction of efforts.
Technical Paper

Timing Protection in Multifunctional and Safety-Related Automotive Control Systems

2009-04-20
2009-01-0757
With the ever increasing amount of available software processing resources in a vehicle, more and more high-level algorithms are emerging to improve the existing systems in a car. Often these algorithms only need a platform with a bus connection and some resources such as processing power and memory space. These functions are predestined to be integrated into existing systems that have free resources. This paper will examine the role of time protection in these multi-algorithm systems and describe what timing protection means and why it is required. The processing time will be partitioned to the different processing levels like interrupts, services and tasks. The problems of timing protection will be illustrated as well as its limitations. The conflict between real-time requirements and timing protection will be shown. Finally Autosar will be examined with focus on timing protection and applicability in actual development projects.
Journal Article

Timing Analysis for Hypervisor-based I/O Virtualization in Safety-Related Automotive Systems

2017-03-28
2017-01-1621
The increasing complexity of automotive functions which are necessary for improved driving assistance systems and automated driving require a change of common vehicle architectures. This includes new concepts for E/E architectures such as a domain-oriented vehicle network based on powerful Domain Control Units (DCUs). These highly integrated controllers consolidate several applications on different safety levels on the same ECU. Hence, the functions depend on a strictly separated and isolated implementation to guarantee a correct behavior. This requires middleware layers which guarantee task isolation and Quality of Service (QoS) communication have to provide several new features, depending on the domain the corresponding control unit is used for. In a first step we identify requirements for a middleware in automotive DCUs. Our goal is to reuse legacy AUTOSAR based code in a multicore domain controller.
Technical Paper

Thermal Simulation of High-Speed EV Transmission Bearings for Minimum Lubricant Volume

2022-08-30
2022-01-1120
Minimizing the lubricant volume in a transmission system reduces the churning losses and overall unit costs. However, lubricant volume reduction is also detrimental to the thermal stability of the system. Transmission overheating can result in significant issues in the region of loaded contacts, risking severe surface/sub-surface damage in bearings and gears, as well as reduction in the lubricant quality through advanced oxidation and shear degradation. The increasing trend of electrified transmission input speeds raises the importance of understanding the thermal limits of the system at the envelope of the performance to ensure quality and reliability can be maintained, as well as being a key factor in the development, effecting internal housing features for the promotion of lubrication. A nodal bearing thermal model will be shown which utilizes thermal resistances and smooth particle based CFD for determining bearing lubricant feed rates during operation.
Technical Paper

The Turbocharged GDI Engine: Boosted Synergies for High Fuel Economy Plus Ultra-low Emission

2006-04-03
2006-01-1266
Recent turbocharged Gasoline engines based on MPFI offer excellent power output and high nominal torque, however, also some disadvantages. The most significant restrictions of TC-engines - like poor fuel economy, limited emission capability and delayed transient response (turbo lag) - can be improved dramatically by a refined GDI application. The synergy effects of GDI, which are also partly used at naturally aspirated engines, are even more significant with turbocharging. The low emission capability of GDI enables turbocharged SULEV concepts within moderate cost of the emission / aftertreatment system. The outstanding low-end-torque, the high specific power and torque output of refined GDI-Turbo concepts enable high fuel efficiency combined with excellent fun to drive. Thus such GDI-Turbo concepts will become the most attractive technology to fulfill highest fuel economy-, emission- and performance requirements simultaneously.
X