Refine Your Search

Topic

Author

Search Results

Technical Paper

Vision Based Surface Roughness Characterization of Flat Surfaces Machined with EDM

2019-10-11
2019-28-0148
Surface roughness measurement is an important one in any manufacturing next to dimensions. In this investigation, a vision system and image processing tools were used to develop reliable surface roughness characterization technique for Electrical Discharge Machined surfaces. A CMOS camera with red LED light source were used for capturing images of EDMed surfaces. A separate signal vector generated for all the images from its image pixel intensity matrices. The mean, skewness and kurtosis were obtained from the signal vector. The mean, skewness and kurtosis of the images signal vector correlates very well with the stylus measured hybrid roughness parameters Rda and Rdq. Hence the technique may be preferred for online surface roughness characterization of Electrical Discharge Machined (EDMed) surfaces.
Technical Paper

Turning of Inconel 825 with Coated Carbide Tool Applying Vegetable-Based Cutting Fluid Mixed with CuO, Al2O3 and CNT Nanoparticles by MQL

2019-10-11
2019-28-0060
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with three nanofluids was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of three nanoparticles (CuO, Al2O3, and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness, and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance and smaller flank the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
Technical Paper

Topology Optimisation of Brake Caliper

2020-10-05
2020-01-1620
The objective of the research is to develop a lightweight yet stiff, 2 piston fixed brake caliper which can be used in formula student race car. To make a race car, its components need to be lighter. To stop a car with minimum stopping distance, it needs to have a sophisticated braking system with well-designed components. The designing of the caliper is carried out on the Altair Inspire software. The topology optimisation algorithm is used to minimise the weight of the caliper without compromising the stiffness. The structural analysis is also carried out on the Altair Inspire. The caliper is also tested for fatigue failure using Ansys.
Technical Paper

The Performance of an Automobile Radiator with Aluminum Oxide Nanofluid as a Coolant—An Experimental Investigation

2022-02-17
2022-01-5007
The radiator as heat exchanger plays a very significant role in an engine cooling system by maintaining the coolant at an optimum temperature. The present study aims at improving the performance of an automobile radiator by using nano-coolants. Nano-scale particles have been tested and proven to have enhanced thermal conductivity than their bulk counterparts due to their increased surface area-to-volume ratio. Thus the nanoparticles dispersed in the base fluids called nanofluids are used as a radiator coolant to improve the performance of the radiator. Aluminum oxide (Al2O3)-based nanofluid at 0.04%, 0.08%, 0.15% by volume concentrations is used in two different base fluids, one being water and the other ethylene glycol (30%) (EG)-water mixture. Coolant is supplied at three different inlet temperatures at 40°C, 50°C, and 60°C and at five different flow rates ranging from 2 L/min to 6 L/min at an interval of 1 L/min.
Technical Paper

Surface Modification of Aluminium Alloy 5083 Reinforced with Cr2O3/TiO2 by Friction Stir Process

2019-10-11
2019-28-0179
The surface properties have a vital role in the overall performance of the parts like brake shoe pad and other frame system. The mechanical and residual stress measurements of aluminium alloy 5083 were investigated on friction stir processed plates using the reinforcements of chromium oxide (Cr2O3) and titanium dioxide (TiO2) separately as well as combination of these powders. A comparative study was made to analyze the effects of reinforcements, tool type (cylindrical and threaded), parameters and the volume fraction of the reinforcements. The mechanical properties such as surface hardness and residual stress of the friction stir processed specimens were investigated. The experimental results shows that there was a significant increase in surface hardness (118 HRC) as well as a decrease in residual stress compare to the base metal. This study also reveals that the threaded tool with a reinforcement of Cr2O3 and TiO2 reflected better mechanical properties than the cylindrical tool.
Technical Paper

Study on Effect of Laser Peening on Inconel 718 Produced by DMLS Technique

2019-10-11
2019-28-0146
In Additive manufacturing, Direct Metal Laser Sintering (DMLS) is a rapid manufacturing technique used for manufacturing of functional component. Finely powered metal is melted by using high-energy fiber laser, by Island principle strategy that produces mechanically and thermally stable metallic component with reduced stresses, thermal gradients and at high precision. Inconel is an austenitic chromium nickel-based superalloy often used in the applications which require high strength and temperature resistant. It can retain its properties at high temperature. An attempt is made to examine the effect of laser shot peening (LSP) on DMLS Inconel 718 sample. Microstructure shows elliptical shaped structure and formation of new grain boundaries. The surface roughness of the material has been increased due to the effect of laser shock pulse and ablative nature. Macro hardness increased to 13% on the surface.
Technical Paper

Studies on Metallurgical and Mechanical Properties of Plasma Arc Welded Aerospace 80A Grade Alloy

2020-09-25
2020-28-0466
The current research work scrutinized the influence of plasma arc in the metallurgical and mechanical behavior of Nimonic 80A weldment. Defect free weld bead of 6 mm thickness was achieved in a single pass through plasma arc welding. The microstructure of weldment is decorated with cellular dendritic structure at the center and at the weld interface region columnar dendritic structure was observed. Metallurgical analysis showed the Cr and Ti secondary precipitates in the interdendritic region of the WZ. The existence of M23C6 and Cr2Ti were observed through the X-ray diffraction analysis. Both tensile test and microhardness test were conducted to study the mechanical properties of weldment. The result concluded that both the strength and ductility inferior than base metal and the hardness of the weld bead is similar to that of BMl.
Technical Paper

Stress and Model Analysis of Upper and Lower Bolster Components of Molten Steel Transfer Vehicle

2019-10-11
2019-28-0119
The transportation of hot metal from blast furnaces to melting shops is carried out by molten steel transfer vehicle such as Torpedo ladle car in the steel plants. In need to design Torpedo ladle car within size limitation, capacity requirement and withstanding the impact, static, thermal shock and abrasion conditions, structural analysis is essential for validation. In this paper, stress and model analysis for upper and lower bolsters of Torpedo Ladle Car is carried out. The components are modelled in CAD and analysed using finite element method using software with the required boundary conditions. The results of structural analysis of bolster components are presented and discussed. The results shows that the deflection at the centre of upper and lower bolster was due to bending and applied load. The modal analysis predicted the natural frequencies by using block lanczos method.
Technical Paper

Parametric Study, the Process Benefits, Optimization and Chip Morphology Study of Machining Parameter on Turning of Inconel 718 Using CVD Coated Tool and Nd: YAG Laser

2018-07-09
2018-28-0029
This paper presents the parametric study, process benefits, optimization and chip appearance of machining parameters on turning of the Inconel 718 using Nd: YAG laser source. To analyze the mentioned above effect on alloy 718, the cutting inserts of chemical vapor disposition coated (CVD) TiN/TICN/Al2O3 are used to turn at the time of machining. To evaluate the linear (mean effect plots) and interaction effect (3D surface plots) of laser parameters on the force, roughness and tool wear to keep the minimal, experiments of the L27 orthogonal array are done by selecting the controllable parameters viz speed, the rate of feed along with laser power. From the parametric study, increase in speed and laser power along with decrement in the rate of feed resulted in lower cutting force. But surface finish and tool wear reduced with a decline in speed and scale of feed and increased with increment in laser power.
Technical Paper

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

2019-10-11
2019-28-0061
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function.
Technical Paper

Optical Surface Roughness Evaluation of Ground Specimens Using Speckle Line Images

2020-09-25
2020-28-0514
A well-established method of surface roughness measurement is of stylus-based. The filtering effect of the stylus tip is the major lacuna of the process. So in the present study, a vision based 100% inspection procedure is proposed for the characterization of ground specimens. A CMOS camera, and monochromatic line laser source were used for capturing speckle line images of the ground specimens. Signal vectors were generated from each of the surface images of ground specimens using MATLAB software. On the other hand the roughness of the ground specimens, particularly the Arithmetic roughness average (Ra) & Arithmetic mean slope (Rda) were computed using a stylus instrument. It was found that standard deviation and kurtosis having good correlation with the image pixel intensity of the signal vectors with the correlation coefficient of 0.96 & 0.89 for Ra and 0.86 & 0.82 for Rda respectively.
Technical Paper

Noise Absorption Behavior of Aluminum Honeycomb Composite

2020-09-25
2020-28-0453
Natural fibers are one of the major ways to improve environmental pollution. In this study experimental investigation and simulation of honeycomb filled with cotton fabric, wood dust and polyurethane were carried out. This study determines the potential use of cotton fabric, wood dust as good sound absorbers. Automotive industries are looking forward to materials that have good acoustic properties, lightweight, strong and economical. This study provides a better understanding of sound-absorbing material with other mechanical properties. With simulation and experimental results, validation of works provides a wider industrial application for the interior of automotive industries including marine, aviation, railway industry and many more.
Technical Paper

Modeling and Analysis of Motorcycle Assembly for Dynamic Investigation

2023-11-10
2023-28-0117
“The purpose of this study is to explore the structural behavior of motorcycle frames that are fabricated from metals such as steel and aluminum, and that are welded together to generate beams. The components of the wheel, handlebar, and saddle are assembled together to form the chassis of the bicycle. For the purpose of determining modal characteristics such natural frequencies and mode shapes, two different analytical approaches, namely finite element analysis (FEA) and experimental modal analysis (EMA), were utilized. The framework of the chassis was design in 3D using CAD software to carry out the FEA, and after specifying the meshing type and material parameters, normal mode analysis was carried out. To contrast modal characteristics with FEA results, EMA utilized impact hammer testing with a roving accelerometer approach.
Technical Paper

Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles

2019-10-11
2019-28-0094
Various research regarding new types of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide range application of aluminium alloy is in aerospace and Automobile Industries. The demand for this material improved by mechanical properties with little to zero increment in weight. The current work is based on the fabrication of hybrid aluminium metal matrix composites with the addition of TiC (Titanium Carbide) and Al2O3 (Aluminium Oxide) reinforcement particle using stir casting technique. Three types of hybrid composite samples were prepared based on the weight percentage 5% Al2O3+0% TiC (sample-1), 8% Al2O3 + 12% TiC (sample-2), 20% Al2O3+15% TiC (sample-3). The objective of the study is to analyze the mechanical and corrosion properties of the hybrid composite with the influence of the reinforcement and varying the weight fraction of the particles.
Technical Paper

Machinability and Parametric Optimization of Inconel 600 Using Taguchi-Desirability Analysis under Dry Environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion-resistant, excellent mechanical properties, and good creep rupture strength at a higher temperature. Alloy 600 is used in heat treating, phenol condensers, chemical and food processing, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate, and cutting depth on the force, surface roughness, and tool wear is carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Investigation on Microstructure and Mechanical Properties of Corrosion Resistance Alloy C-2000 Fabricated by Conventional Arc Welding Technique

2019-10-11
2019-28-0177
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
Technical Paper

Investigation of Natural Fiber Composite in EMI Shielding under the Influence of Hematite and Rice Husk Ash Filler

2022-12-23
2022-28-0588
The increased use of electronic systems has become a severe concern for electromagnetic pollution, leading to the development of materials to reduce electromagnetic interference (EMI). The present study investigated the EMI-shielding effectiveness (EMI-SE) of flax fiber polymer composite (FFC) in the available free space method by varying the wt.% of Rice husk ash (RHA) and hematite. The flax fiber was coated with the dip coating technique, and the coated fibers were used for preparing FFC by hand layup. The EMI-SE was measured at 32-33.5 dB in the X-band frequency range (8-12 GHz). As the cost is low and can be mass-produced, results show that the developed FFC are suitable for electric vehicle applications specifically to shield Electronic control units (ECU), where the interference effect needs to be reduced.
Technical Paper

Investigation of Metallurgical and Mechanical Properties of Hastelloy X by Key-Hole Plasma Arc Welding Process

2019-10-11
2019-28-0152
This research work describes the effect of microsegregation, microstructure and tensile strength of the Hastelloy X weldment produced by keyhole plasma arc welding (K-PAW). Weld joint was obtained in a single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in K-PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich P phase and Cr-rich M23C6 phase. The observed tensile strength of weldment is 6.14 % inferior to base metal.
Technical Paper

Investigation of Machinability Characteristics on Turning of Nimonic 90A Using Al2O3 and CNT Nanoparticle in Groundnut Oil

2019-10-11
2019-28-0072
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by TiAlN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array and derringer’s desirability response surface has been employed for parameter design and optimal search. 3D surface plots, factor effect plots, Taguchi S/N, and variance tests are used to study the effect of concentration on the machining performance of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics.
Technical Paper

Investigation of Machinability Characteristics and Chip Morphology on Inconel 718: Dry and MQL

2019-10-11
2019-28-0066
Inconel 718 has excellent material properties, corrosion, and oxidation property among the nickel based superalloy. This property makes it suitable for producing components operating under extreme environments subjected to pressure and heat. The present study aims to examine the machinability comparison under dry and MQL turning of Inconel 718. The secondary aim is to report the sustainable machining on Inconel 718. Dry and MQL (Minimum Quantity Lubrication) experiments are carried out on Inconel 718 alloy based on Taguchi’s designed L16 orthogonal array. The cutting tools are an advanced coated cutting tool and uncoated tool. The levels of turning parameters are varied at 70, 120, 170 and 220 m/min of turning speed, 0.1, 0.15, 0.2 and 0.25 mm/rev of feed rate and 0.3, 0.4, 0.5 and 0.6 mm of cutting depth. The cutting forces, surface roughness, flank wear, and chip morphology are taken for the current investigation. The factor effect on output responses is studied using 2D plots.
X