Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation of a Driver Recovery Model Using Real-World Road Departure Cases

2013-04-08
2013-01-0723
Predicting driver response to road departure and attempted recovery is a challenging but essential need for estimating the benefits of active safety systems. One promising approach has been to mathematically model the driver steering and braking inputs during departure and recovery. The objective of this paper is to compare a model developed by Volvo, Ford, and UMRTI (VFU) through the Advanced Crash Avoidance Technologies (ACAT) Program against a set of real-world departure events. These departure events, collected by Hutchinson and Kennedy, include the vehicle's off road trajectory in 256 road departure events involving passenger vehicles. The VFU-ACAT model was exercised for left side road departures onto the median of a divided highway with a speed limit of 113 kph (70 mph). At low departure angles, the VFU-ACAT model underpredicted the maximum lateral and longitudinal distances when compared to the departure events measured by Hutchinson and Kennedy.
Journal Article

Using Objective Vehicle-Handling Metrics for Tire Performance Evaluation and Selection

2013-04-08
2013-01-0743
This paper outlines the development of a simulation-based process for assessing the handling performance of a given set of tires on a specific vehicle. Based on force and moment data, a Pacejka tire model was developed for each of the five sets of tires used in this study. To begin with, simple handling metrics including under-steer gradient were calculated using cornering stiffness derived from the Pacejka model. This Pacejka tire model was subsequently combined with a 3DOF non-linear vehicle model to create a simulation model in MATLAB/Simulink®. Other handling metrics were calculated based on simulation results to step and sinusoidal (General Motors Company) steering inputs. Calculated performance metrics include yaw velocity overshoot, yaw velocity response time, lateral acceleration response time and steering sensitivity. In addition to this, the phase lag in lateral acceleration and yaw rate of the vehicle to a sinusoidal steering input were also calculated.
Technical Paper

Thermo-Mechanical Reliability of Nano-Silver Sintered Joints versus Lead-Free Solder Joints for Attaching Large-Area Silicon Devices

2010-11-02
2010-01-1728
Nano-silver sintered bonding was carried out at 275°C and under 3MPa pressures, and soldering in a vacuum reflowing oven to reduce voiding. Both joints are subject to large shear stresses due to the mismatch in coefficients of thermal expansion (CTE) between the chip and the substrate. In this study, residual stresses in the chip-on-substrate assemblies were determined by measuring the bending curvatures of the bonded structures. An in-house optical setup measured the bending curvatures using a thin-film stress measurement technique. From the measured bending curvatures and the mechanical properties of the constituent materials, residual stresses were calculated. The thermo-mechanical reliabilities of both joining techniques were tested by thermal cycling. The chip assemblies were cycled between -40°C and 125°C (100 minutes of cycle time, 10 minutes of dwell time) and the changes in their bending curvatures were measured.
Technical Paper

Target Population for Injury Reduction from Pre-Crash Systems

2010-04-12
2010-01-0463
Pre-Crash Systems (PCS) integrate the features of active and passive safety systems to reduce both crash and injury severity. Upon detection of an impending collision, PCS can provide an early warning to the driver and activate automatic braking to reduce the crash severity for the subject vehicle. PCS can also activate the seatbelt pretensioners prior to impact. This paper identifies the opportunities for injury prevention in crash types for which PCS can be potentially activated. These PCS applicable crash types include rear-end crashes, single vehicle crashes into objects (trees, poles, structures, parked vehicles), and head-on crashes. PCS can benefit the occupants of both the striking and struck vehicle. In this paper, the opportunity for injury reduction in the struck vehicle is also tabulated. The study is based upon the analysis of approximately 20,000 frontal crash cases extracted from NASS / CDS 1997-2008.
Technical Paper

Study on the Effects of Rubber Compounds on Tire Performance on Ice

2020-04-14
2020-01-1228
Mechanical and thermal properties of the rubber compounds of a tire play an important role in the overall performance of the tire when it is in contact with the terrain. Although there are many studies conducted on the properties of the rubber compounds of the tire to improve some of the tire characteristics such as the wear of the tread, there is a limited number of studies that focused on the performance of the tire when it is in contact with ice. This study is a part of a more comprehensive project looking into tire-ice performance and modeling. A significant part of this study is the experimental investigation of the effect of rubber compounds on tire performance in contact with ice. For this, four tires have been selected for testing. Three of them are completely identical in all tire parameters (such as tire dimensions), except for the rubber compounds. Several tests were conducted for the chosen tires in three modes: free rolling, braking, and traction.
Technical Paper

Sensitivity of Preferred Driving Postures and Determination of Core Seat Track Adjustment Ranges

2007-06-12
2007-01-2471
With advances in virtual prototyping, accurate digital modeling of driving posture is regarded as a fundamental step in the design of ergonomic driver-seat-cabin systems. Extensive work on driving postures has been carried out focusing on the measurement and prediction of driving postures and the determination of comfortable joint angle ranges. However, studies on postural sensitivity are scarce. The current study investigated whether a driver-selected posture actually represents the most preferred one, by comparing the former with ratings of postures selected at 20 predefined places around the original hip joint center (HJC). An experiment was undertaken in a lab setting, using two distinctive driving package geometries: one for a sedan and the other for an SUV. The 20 postural ratings were compared with that of the initial user-selected position.
Technical Paper

Robust Optimal Control of Vehicle Lateral Motion with Driver-in-the-Loop

2012-09-24
2012-01-1903
Dynamic “Game Theory” brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In previous studies, it was shown that vehicle stability can be represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the vehicle stability controller (VSC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the VSC command is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion. This study focus on the uncertainty in the inputs, and more specifically, the driver's steering input.
Journal Article

Road Profile Estimation for Active Suspension Applications

2015-04-14
2015-01-0651
The road profile has been shown to have significant effects on various vehicle conditions including ride, handling, fatigue or even energy efficiency; as a result it has become a variable of interest in the design and control of numerous vehicle parts. In this study, an integrated state estimation algorithm is proposed that can provide continuous information on road elevation and profile variations, primarily to be used in active suspension controls. A novel tire instrumentation technology (smart tire) is adopted together with a sensor couple of wheel attached accelerometer and suspension deflection sensor as observer inputs. The algorithm utilizes an adaptive Kalman filter (AKF) structure that provides the sprung and unsprung mass displacements to a sliding-mode differentiator, which then yields to the estimation of road elevations and the corresponding road profile along with the quarter car states.
Technical Paper

Reliability Analysis of an Automotive Wheel Assembly

1993-03-01
930406
The incorporation of reliability theory into a fatigue analysis algorithm is studied. This probabilistic approach gives designers the ability to quantify “real world” variations existing in the material properties, geometry, and loading of engineering components. Such information would serve to enhance the speed and accuracy of current design techniques. An automobile wheel assembly is then introduced as an example of the applications of this durability/reliability design package.
Technical Paper

Probability-Based Methods for Fatigue Analysis

1992-02-01
920661
Modern fatigue analysis techniques, that can provide reliable estimates of the service performance of components and structures, are finding increasing use in vehicle development programs. A major objective of such efforts is the prediction of the field performance of a fleet of vehicles as influenced by the host of design, manufacturing, and performance variables. An approach to this complex problem, based on the incorporation of probability theory in established life prediction methods, is presented. In this way, quantitative estimates of the lifetime distribution of a population are obtained based on anticipated, or specified, variations in component geometry, material processing sequences, and service loading. The application of this approach is demonstrated through a case study of an automotive transmission component.
Technical Paper

Preliminary Estimates of Near Side Crash Injury Risk in Best Performing Passenger Vehicles

2018-04-03
2018-01-0548
The goal of this paper is to estimate near-side injury risk in vehicles with the best side impact performance in the U.S. New Car Assessment Program (NCAP). The longer-term goal is to predict the incidence of crashes and injury outcomes in the U.S. in a future fleet of the 2025-time frame after current active and passive safety countermeasures are fully implemented. Our assumption was that, by 2025, all new vehicles will have side impact passive safety performance equivalent to current U.S. NCAP five star ratings. The analysis was based on real-world crashes extracted from case years 2010-2015 in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) in which front-row occupants of late-model vehicles (Model Year 2011+) were exposed to a near-side crash.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Journal Article

Optimal Direct Yaw Controller Design for Vehicle Systems with Human Driver

2011-09-13
2011-01-2149
Dynamic game theory brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In the presented methodology, vehicle stability is represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the direct yaw controller (DYC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the DYC control algorithm is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Technical Paper

Methodology for Estimating the Benefits of Lane Departure Warnings using Event Data Recorders

2018-04-03
2018-01-0509
Road departures are one of the most deadly crash modes, accounting for nearly one third of all crash fatalities in the US. Lane departure warning (LDW) systems can warn the driver of the departure and lane departure prevention (LDP) systems can steer the vehicle back into the lane. One purpose of these systems is to reduce the quantity of road departure crashes. This paper presents a method to predict the maximum effectiveness of these systems. Thirty-nine (39) real world crashes from the National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) database were reconstructed using pre-crash velocities downloaded for each case from the vehicle event data recorder (EDR). The pre-crash velocities were mapped onto the vehicle crash trajectory. The simulations assumed a warning was delivered when the lead tire crossed the lane line. Each case was simulated twice with driver reaction times of 0.38 s and 1.36 s after which time the driver began steering back toward the road.
Journal Article

Method for Estimating Time to Collision at Braking in Real-World, Lead Vehicle Stopped Rear-End Crashes for Use in Pre-Crash System Design

2011-04-12
2011-01-0576
This study presents a method for determining the time to collision (TTC) at which a driver of the striking vehicle in a real-world, lead vehicle stopped (LVS) rear-end collision applied the brakes. The method employs real-world cases that were extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS / CDS) years 2000 to 2009. Selected cases had an Event Data Recorder (EDR) recovered from the striking vehicle that contained pre-crash vehicle speed and brake application. Of 59 cases with complete EDR records, 12 cases (20%) of drivers appeared not to apply the brakes at all prior to the collision. The method was demonstrated using 47 rear-end cases in which there was driver braking. The average braking deceleration for those cases with sufficient vehicle speed information was found to be 0.52 g's. The average TTC that braking was initiated at was found to vary in the sample population from 1.1 to 1.4 seconds.
Technical Paper

Low Cycle Fatigue Properties of Al-Si Eutectic Alloys

1997-02-24
970704
The effect of Si-phase on the axial, low-cycle fatigue behavior of Al-Si eutectic alloys was investigated using test specimens prepared from alloys processed either by continuous casting or extrusion. Results indicate that, for continuous casting, all fatigue fractures resulted from shear-type crack initiation and propagation with an attendant shortening of fatigue life. For extruded material, fatigue cracks originated in the Si phase. In both instances, initiation and growth mechanisms were essentially identical to those observed in high-cycle fatigue. Cyclic properties obtained from phenomenological models are presented and discussed.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Throttle Modulation

2014-04-01
2014-01-0105
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
X