Refine Your Search




Search Results

Technical Paper

Vw Lupo, the WorldS First 3-Liter Car

After the success of the 4-cylinder 1.9-liter TDI and SDI direct-injection diesel engines in the Passat, Jetta and Polo classes, a new 3-cylinder TDI has been developed for use in the "Lupo 3L,' a compact car with a fuel consumption of 3 liters per 100 km. A new injection system with unit injectors, together with a fully electronically controlled engine management system featuring drive-by-wire- technology, a turbocharger with variable turbine geometry and a fully automated mechanical gearbox and clutch, for the first time ensures the potential to meet the stringent D4 exhaust emissions level and to achieve excellent fuel economy. The wheel-torque based engine and gearbox management systems optimize engine operation in terms of efficiency and emissions.
Technical Paper

Variable Compression Ratio - A Design Solution for Fuel Economy Concepts

The challenge to reduce fuel consumption in S.I. engines is leading to the application of new series production technologies: including direct injection and, recently, the variable valve train, both aiming at unthrottled engine operation. In addition to these technologies, turbo- or mechanical supercharging is of increasing interest because, in principle, it offers a significant potential for improved fuel economy. However, a fixed compression ratio normally leads to a compromise, in that the charged engine is more of a performance enhancement than an improver of fuel economy. Fuel efficient downsizing concepts can be realized through the application of variable compression ratio. In this paper, a variable compression ratio design solution featuring eccentric movement of the crankshaft is described. Special attention is given to the integration of this solution into the base engine.
Technical Paper

Vapor/Liquid Visualization with Laser-Induced Exciplex Fluorescence in an SI-Engine for Different Fuel Injection Timings

Laser-induced exciplex fluorescence has been applied to the mixture formation process in the combustion chamber of an optically-accessible four-cylinder in-line spark-ignition engine in order to distinguish between liquid and vapor fuel distribution during the intake and compression stroke for different injection timings. The naphthalene/N,N,N′N′-tetramethyl p-phenylene diamine (TMPD) exciplex system excited at 308nm with a broadband XeCl excimer laser is used to obtain spectrally-separated, single-shot fluorescence images of the liquid or vapor phase of the fuel. For different timings of the fuel injector this technique is applied to obtain crank-angle-resolved images of the resulting mixture in the combustion chamber. The fluorescence light is detected with an intensified slow-scan CCD-camera equipped with appropriate filters.
Technical Paper

Upgrade Design of the Yuchai F-6113 HD-DI Diesel Engine

The Yuchai F-6113 is an inline 6-cylinder heavy duty Diesel engine, mainly for truck application with a displacement of 8.4 liters and a rated power of 258 kW. It was derived from the F-6108 with a displacement of 7.3 liters. The boundary conditions for the new crankcase were set by the existing machining line. Substantially increasing the bore diameter while keeping the bore pitch constant, was achieved by replacing the conventional top stop liner with a mid stop liner with open deck. This liner concept is rather unique for heavy duty truck engines. The two 2-valve cylinder heads, covering 3 cylinders each, were replaced by a 4-valve one-piece cylinder head. The design comprises an electronically controlled Unit Pump Injection System (UPS) with the alternative to use an inline injection pump. The engine structure was laid out for the high specific output and the peak cylinder pressure requirements for the compliance with Euro III emission legislation.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Technical Paper

Time-Resolved Analysis of Soot Formation and Oxidation in a Direct-Injection Diesel Engine for Different EGR-Rates by an Extinction Method

The formation of soot during the first phase and the oxidation of soot during the later phase of the combustion in a direct-injection diesel engine have been investigated in detail by an extinction method. The experiments were performed in a 1.9 l near-production high-speed four-cylinder in-line direct-injection diesel engine for passenger cars for different rates of exhaust gas recirculation (EGR) and for different fuels. The measurements result in crank angle resolved and cycle-averaged soot mass concentrations in the piston bowl and the combustion chamber. The results show that with increasing EGR-rates the amount of soot formed is increased only slightly but the amount of soot oxidized during combustion decreases significantly. This is assumed to be the main reason for the increase of soot in the exhaust gas with increasing EGR-rates.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Technical Paper

The Response of a Closed Loop Controlled Diesel Engine on Fuel Variation

An investigation was conducted to elucidate, how the latest turbocharged, direct injection Volkswagen diesel engine generation with cylinder pressure based closed loop control, to be launched in the US in 2008, reacts to fuel variability. A de-correlated fuels matrix was designed to bracket the range of US market fuel properties, which allowed a clear correlation of individual fuel properties with engine response. The test program consisting of steady state operating points showed that cylinder pressure based closed loop control successfully levels out the influence of fuel ignition quality, showing the effectiveness of this new technology for markets with a wide range of fuel qualities. However, it also showed that within the cetane range tested (39 to 55), despite the constant combustion mid-point, cetane number still has an influence on particulate and gaseous emissions. Volatility and energy density also influence the engine's behavior, but less strongly.
Technical Paper

The New Diesel Engine in the New Beetle

With the introduction of the New Beetle, Volkswagen is offering the next generation of the 1.9l TDI engine. Several evolutionary changes have been made to the TDI concept to further improve its emissions, efficiency and performance. Emissions performance is improved with increased fuel injection pressure, optimized fuel injectors, calibration modifications, EGR cooling and reduced crevice volume in the combustion chamber. Efficiency is improved with new oil pump, vacuum pump and water pump drive systems and the elimination of an auxiliary driveshaft. Performance and efficiency is improved with the addition of a variable geometry turbocharger, which increases torque at lower engine speeds while preserving performance at higher engine speeds. This paper describes the many enhancements found in this latest generation TDI and gives a brief lookout to the future trends in diesel engine development such as a high pressure injection system with unit injectors.
Technical Paper

The Impact of Different Biofuel Components in Diesel Blends on Engine Efficiency and Emission Performance

Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, the Institute for Combustion Engines carried out an investigation program to explore the potential of future biofuel components in Diesel blends. In this paper, thermodynamic single cylinder engine results of today's and future biofuel components are presented with respect to their engine-out emissions and engine efficiency. The investigations were divided into two phases: In the first phase, investigations were performed with rapeseed oil methyl ester (B100) and an Ethanol-Gasoline blend (E85). In order to analyze the impact of different fuel blends, mixtures with 10 vol-% of B100 or E85 and 90 vol-% of standardized EN590 Diesel were investigated. Due to the low cetane number of E85, it cannot be used purely in a Diesel engine.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Simulation of Endurance and Thermo Cycle Testing for Highly Loaded HSDI Diesel Cylinder Heads

Due to today's demands to reduce cost and product time to market, engineering procedures are increasingly using more sophisticated simulation techniques, instead of validation testing. Early implementation of CAE methods yield higher quality products, even with first prototypes, reducing the design iterations required to reach production quality. The strategy is to conduct specific evaluations of a realistic representation of the product while focusing on the key boundary conditions necessary to extract fatigue effects. Discussed in this paper are adequate CAE methods for early identification, evaluation and removal of conceptual and local structural weaknesses. Possible solutions gained from a computational optimization process are discussed for highly loaded HSDI diesel cylinder heads as a representative example.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

Relationship between Fuel Properties and Sensitivity Analysis of Non-Aromatic and Aromatic Fuels Used in a Single Cylinder Heavy Duty Diesel Engine

Fuel properties are always considered as one of the main factors to diesel engines concerning performance and emission discussions. There are still challenges for researchers to identify the most correlating and non-correlating fuel properties and their effects on engine behavior. Statistical analyses have been applied in this study to derive the most un-correlating properties. In parallel, sensitivity analysis was performed for the fuel properties as well as to the emission and performance of the engine. On one hand, two different analyses were implemented; one with consideration of both, non-aromatic and aromatic fuels, and the other were performed separately for each individual fuel group. The results offer a different influence on each type of analysis. Finally, by considering both methods, most common correlating and non-correlating properties have been derived.
Technical Paper

Realizing Future Trends in Diesel Engine Development

Volkswagen is the first automobile manufacturer to supply a passenger car with a direct fuel injection diesel engine to the US market, starting 1996. To meet the stringent US exhaust gas legislation the very successful European 1.9 liter TDI engine has been further developed for the 1996 and 1997 Passat. This TD1 incorporates a number of innovations in advanced diesel technology. Emissions-reducing innovations include: reduced crevice volume higher injection pressures upgraded injection management integrated EGR manifold system EGR cooling diesel catalytic converter This TDI engine configuration is also to be offered in the 1997 Golf and Jetta class and the new Passat in model year 1998. Over the coming years the TDI engine concept will be further optimized by utilizing variations of the above innovations.
Technical Paper

Quantitative In-Cylinder NO LIF Measurements with a KrF Excimer Laser Applied to a Mass-Production SI Engine Fueled with Isooctane and Regular Gasoline

Quantitative 1-D spatially-resolved NO LIF measurements in the combustion chamber of a mass-production SI engine with port-fuel injection using a tunable KrF excimer laser are presented. One of the main advantages of this approach is that KrF laser radiation at 248 nm is only slightly absorbed by the in-cylinder gases during engine combustion and therefore it allows measurements at all crank angles. Multispecies detection turned out to be crucial for this approach since it is possible to calculate the in-cylinder temperature from the detected Rayleigh scattering and the simultaneously acquired pressure traces. Additionally, it allows the monitoring of interfering emissions and spectroscopic effects like fluorescence trapping which turned out to take place. Excitation with 248 nm yields LIF emissions at shorter wavelengths than the laser wavelength (at 237 and 226 nm).
Technical Paper

Prediction of Hydrodynamic Bearing Behaviour for Pre-layout of Cranktrain Dimensions

Calculating the bearing reliability and behavior is one of the primary tasks which have to be performed to define the main dimensions of the cranktrain of an internal combustion engine. Since the bearing results are essential for the pre-layout of the cranktrain, the conclusion on the bearing safety should be met as early as possible. Therefore detailed simulations like T-EHD or EHD analysis may not be applied to define the dimensions in such an early development phase. In the frame of this study a prediction methodology, based on a HD bearing approach, for bearing reliability of inline-4 crankshafts of passenger cars is proposed. In this way not only the design phase is shortened but also achieving the optimal solution is simplified. Moreover the requirement of a CAD model is eliminated for the preliminary design phase. The influencing parameters on the bearing behavior are first selected and divided into two groups: geometry and loading.