Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Measurements of Fuel Film Thickness in the Inlet Port of an S.I. Engine by Laser Induced Fluorescence

1995-10-01
952483
Fuel wetting in the inlet port of a gasoline engine was studied using Laser-Induced Fluorescence (LIF). The measurements were done directly on the metal wall surface. Quantitative results were be obtained using a special calibration procedure. The sensitivity of the technique was found to correspond to a fuel layer thickness in the order of 1 μm, and the accuracy was estimated to be approx. 10 %. The engine was run on iso-octane, and in order to obtain fluorescence a dopant (3-pentanone) was added to the fuel. Laser light with a wave length of 266 nm was generated by frequency doubling the light from a Nd-YAG laser in two steps. A laser sheet was directed into the intake port and the fuel layer on the wall could be studied along a line on the bifurcation wall. The fluorescence light was detected with an intensified diode-array camera. The measurements from the fuel film thickness were compared with measurements of the total fuel film mass using an A/F response method.
Technical Paper

Cyclic Variation in an SI Engine Due to the Random Motion of the Flame Kernel

1996-05-01
961152
This paper reports an investigation of the association between flame kernel movement and cyclic variability and assesses the relative importance of this phenomenon, with all other parameters that show a cyclic variability held constant. The flame is assumed to be subjected to a “random walk” by the fluctuating velocity component of the flow field as long as it is of the order of or smaller than the integral scale. However, the mean velocity also imposes prefered convection directions on the flame kernel motion. Two-point LDA (Laser Doppler Anemometry) measurements of mean velocity, turbulence intensity and integral length scale are used as input data to the simulations. A quasi-dimensional computer code with a moving flame center position is used to simulate the influence of these two components on the performance of an S I engine with a tumble-based combustion system.
X