Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
Technical Paper

Validation of a Reduced Chemical Mechanism Coupled to CFD Model in a 2-Stroke HCCI Engine

2015-04-14
2015-01-0392
Homogeneous Charge Compression Ignition (HCCI) combustion technology has demonstrated a profound potential to decrease both emissions and fuel consumption. In this way, the significance of the 2-stroke HCCI engine has been underestimated as it can provide more power stroke in comparison to a 4-stroke engine. Moreover, the mass of trapped residual gases is much larger in a 2-stroke engine, causing higher initial charge temperatures, which leads to easier auto-ignition. For controlling 2-stroke HCCI engines, it is vital to find optimized simulation approaches of HCCI combustion with a focus on ignition timing. In this study, a Computational Fluid Dynamic (CFD) model for a 2-stroke gasoline engine was developed coupled to a semi-detailed chemical mechanism of iso-octane to investigate the simulation capability of the considered chemical mechanism and the effects of different simulation parameters such as the turbulence model, grid density and time step size.
Journal Article

Validation of Longer and Heavier Vehicle Combination Simulation Models

2013-09-24
2013-01-2369
This paper discusses the development and subsequent validation process of generic multi-body models for commercial vehicle combinations. The model is intended for performance assessment and improving of current and future combinations for the European road network. A second goal is to employ the model for the development of driver support systems and active steering strategies for both low speed manoeuvrability and high speed stability. The model is developed in SimMechanics, which is part of the MATLAB/Simulink software. Due to its modularity, one can quickly modify the model to the desired configuration and dimensions; therefore various multi articulation vehicle models can be created. The paper further illustrates the simplified and generic modelling methods used to build particular components such as chassis, tyres or suspension in the multibody domain.
Technical Paper

Translating Environmental Legislation into the Engineering Design Domain

2004-03-08
2004-01-0248
The aim of this paper is to present and discuss a case study on how an Original Equipment Manufacturer's technical design center translates and integrates legislative environmental requirements into their product range. The integration of these environmental requirements during the conceptual design phase, where the significant proportion of resources is committed, is of utmost importance. Additionally, with increasing levels of product development being conducted by the first-tier suppliers, there is greater emphasis on the Original Equipment Manufacturer, who controls the product specifications, for translating and filtering the environmental requirements down the supply chain. A Requirements Management based model addressing environmental issues is described.
Technical Paper

Trajectory Optimization of Airliners to Minimize Environmental Impact

2015-09-15
2015-01-2400
With the rapid growth in passenger transportation through aviation projected to continue into the future, it is incumbent on aerospace engineers to seek ways to reduce the negative impact of airliner operation on the environment. Key metrics to address include noise, fuel consumption, Carbon Dioxide and Nitrous Oxide emissions, and contrail formation. The research presented in this paper generates new aircraft trajectories to reduce these metrics, and compares them with typical scheduled airline operated flights. Results and analysis of test cases on trajectory optimization are presented using an in-house aircraft trajectory optimization framework created under the European Clean Sky Joint Technology Initiative, Systems for Green Operation Integrated Technology Demonstrator. The software tool comprises an optimizer core and relatively high fidelity models of the aircraft's flight path performance, air traffic control constraints, propulsion and other systems.
Technical Paper

Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

2015-04-14
2015-01-1745
For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The introduction of two fuels with different physical and chemical properties makes the combustion process complicated and challenging to model. In this study, a multi-zone approach is applied to NG-diesel RCCI combustion in a heavy-duty engine. Auto-ignition chemistry is believed to be the key process in RCCI. Starting from a multi-zone model that can describe auto-ignition dominated processes, such as HCCI and PCCI, this model is adapted by including reaction mechanisms for natural gas and NOx and by improving the in-cylinder pressure prediction. The model is validated using NG-diesel RCCI measurements that are performed on a 6 cylinder heavy-duty engine.
Technical Paper

The Large Shear Strain Dynamic Behavior of In-Vitro Porcine Brain Tissue and a Silicone Gel Model Material

2000-11-01
2000-01-SC17
The large strain dynamic behavior of brain tissue and silicone gel, a brain substitute material used in mechanical head models, was compared. The non-linear shear strain behavior was characterized using stress relaxation experiments. Brain tissue showed significant shear softening for strains above 1% (approximately 30% softening for shear strains up to 20%) while the time relaxation behavior was nearly strain independent. Silicone gel behaved as a linear viscoelastic solid for all strains tested (up to 50%) and frequencies up to 461 Hz. As a result, the large strain time dependent behavior of both materials could be derived for frequencies up to 1000 Hz from small strain oscillatory experiments and application of Time Temperature Superpositioning. It was concluded that silicone gel material parameters are in the same range as those of brain tissue.
Journal Article

The Introduction of MultiWake - An Adaptable Bluff-Body Wake Emulator for Ground Vehicle Studies

2023-04-11
2023-01-0953
The rise of autonomous technologies may reflect on new vehicle traffic characteristics, likely reducing vehicle-to-vehicle proximity and emerging platooning formations. Energy consumption, stability, and surface contamination are relevant factors that are sensitive to aerodynamic interference while platooning. From the experimental perspective, most wind tunnels were originally designed to host isolated models, and these constraints often limit the investigation of multiple full-body vehicle formations (e.g. test section length, moving ground dimensions, standard testing points). This paper introduces the ‘MultiWake’ model - a parametric bluff-body device based on a morphing concept, which can emulate the aerodynamic wake characteristics of different vehicle classes.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Technical Paper

The Impact of Operating Conditions on Post-Injection Efficacy; a Study Using Design-of-Experiments

2018-04-03
2018-01-0229
Post-injection strategies prove to be a valuable option for reducing soot emission, but experimental results often differ from publication to publication. These discrepancies are likely caused by the selected operating conditions and engine hardware in separate studies. Efforts to optimize not only engine-out soot, but simultaneously fuel economy and emissions of nitrogen oxides (NOx) complicate the understanding of post-injection effects even more. Still, the large amount of published work on the topic is gradually forming a consensus. In the current work, a Design-of-Experiments (DoE) procedure and regression analysis are used to investigate the influence of various operating conditions on post-injection scheduling and efficacy. The study targets emission reductions of soot and NOx, as well as fuel economy improvements. Experiments are conducted on a heavy-duty compression ignition engine at three load-speed combinations.
Technical Paper

The Development of Automated Processes For The Manufacture of Cost-Effective Composite Wing-Boxes

1998-06-02
981839
The manufacturing cost of composite aerostructures is considerably higher than that of equivalent light-alloy ones. There are several reasons for this, but the transfer of the existing technology from military to civil aviation is identified as a major problem. Neither the designs, nor the methods of manufacture, are considered cost-effective when applied to very large, commercially competitive, structures. This problem was among those addressed within a multi-disciplinary, concurrent engineering project sponsored by BAe Airbus and the UK DTI. During the four year programme, alternative manufacturing technology was developed, and Pilot-plant equipment built. The Pilot-plant was successfully used to demonstrate that wing-box components can be more cheaply, more reliably, and more easily manufactured by simple, innovative, easily automated processes.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Spray Combustion Analysis of Humins

2017-09-04
2017-24-0119
Second generation biomass is an attractive renewable feedstock for transport fuels. Its sulfur content is generally negligible and the carbon cycle is reduced from millions to tens of years. One hitherto non-valorized feedstock are so-called humins, a residual product formed in the conversion of sugars to platform chemicals, such as hydroxymethylfurfural and methoxymethylfurfural, intermediates in the production of FDCA, a building block used to produce the polyethylene furanoate (PEF) bottle by Avantium. The focus of this study is to investigate the spray combustion behavior of humins as a renewable alternative for heavy fuel oil (HFO) under large two-stroke engine-like conditions in an optically accessible constant volume chamber.
Technical Paper

Spray Analysis of the PFAMEN Injector

2013-09-08
2013-24-0036
In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The expected advantages of the so-called Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN) injector are lower soot- and CO2 emissions. However, from previous in-house measurements, it has been concluded that the emissions of the porous injector are still not satisfactory. Roughly, this may have multiple reasons. The first one is that the spray distribution is not good enough, the second one is that the droplet sizing is too big due to the lack of droplet breakup. Furthermore air entrainment into the fuel jets might be insufficient. All reasons lead to fuel rich zones and associated soot formation.
Technical Paper

Simulation of rear end impact with a full body human model with a detailed neck: Role of passive muscle properties and initial seating posture

2001-06-04
2001-06-0224
To study the mechanics of the neck during rear end impact, in this paper an existing global human body model and an existing detailed submodel of the neck were combined into a new model. The combined model is validated with responses of volunteers and post mortem human subjects (PMHSs) subjected to rear end impacts of resp 5g and 12g. The volunteers (n=7, 7 tests) were seated on a standard car seat with head restraint, while the PMHSs (n=3, 6 tests) were placed on a rigid seat without head restraint. The model shows good agreement with the PMHS responses when muscle tensile stiffness is increased towards published PMHS tissue properties. For the volunteer simulations, initial seating posture and head restraint position were found to strongly influence the model response. More leaning forward (increasing of horizontal distance head head restraint) results in larger T1 and head motions.
Journal Article

Robustness Testing of Real-Time Automotive Systems Using Sequence Covering Arrays

2013-04-08
2013-01-1228
Testing real-time vehicular systems challenges the tester to design test cases for concurrent and sequential input events, emulating unexpected user and usage profiles. The vehicle response should be robust to unexpected user actions. Sequence Covering Arrays (SCA) offer an approach which can emulate such unexpected user actions by generating an optimized set of test vectors which cover all possible t-way sequences of events. The objective of this research was to find an efficient nonfunctional sequence testing (NFST) strategy for testing the robustness of real-time automotive embedded systems measured by their ability to recover (prove-out test) after applying sequences of user and usage patterns generated by combinatorial test algorithms, considered as “noisy” inputs. The method was validated with a case study of an automotive embedded system tested at Hardware-In-the-Loop (HIL) level. The random sequences were able to alter the system functionality observed at the prove-out test.
Technical Paper

Review on the Effects of Dual-Fuel Operation, Using Diesel and Gaseous Fuels, on Emissions and Performance

2012-04-16
2012-01-0869
In recent years the automotive industry has been forced to reduce the harmful and pollutant emissions emitted by direct-injected diesel engines. To accomplish this difficult task various solutions have been proposed. One of these proposed solutions is the usage of gaseous fuels in addition to the use of liquid diesel. These gaseous fuels have more gasoline-like properties, such as high octane numbers, and thereby are resistant against auto-ignition. Diesel on the other hand, has a high cetane number which makes it prone to auto-ignition. In this case the gaseous fuel is injected in the inlet manifold, and the diesel is direct injected in the cylinder at the end of the compression stroke. Thereby the diesel fuel spontaneously ignites and acts as an ignition source. The main goals for the use of a dual-fuel operation with diesel and gaseous fuels are the reduction of particulate matter (PM) and nitrogen oxides (NOx) emission.
Technical Paper

Regenerative Braking Strategies for A Parallel Hybrid Powertrain with Torque Controlled IVT

2005-10-24
2005-01-3826
Hybrid electric vehicles (HEV) are considered as the most cost effective solution, in the short term perspective, for the achievement of improved fuel economy (FE) and reduced emissions. This paper focuses on regenerative braking in a mild hybrid powertrain with infinitely variable transmission (IVT) and specifically on how its control strategy can be formulated and optimized. The study is conducted using a previously validated fully dynamic powertrain model. An initial investigation of the dynamic vehicle behaviour under braking conditions serves as the basis for the development of a control strategy for best braking performance and maximum energy recovery, the implementation of which requires a fully active and integrated brake control system. Limitations and constraints due to driveline configuration and driveability issues are considered and their effect evaluated. Simulation results show that fuel consumption reductions of 12% are achievable along a standard drive cycle.
Technical Paper

Regenerative Brake-by-Wire System Development and Hardware-In-Loop Test for Autonomous Electrified Vehicle

2017-03-28
2017-01-0401
As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
X