Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 3rd Report: Effect of Piston Motion on Piston Skirt Oil Film Behavior

2006-10-16
2006-01-3349
The necessity of the reduction of the lubricating oil consumption of diesel engines has been increasing its importance to reduce the negative effect of exhausted oil on after treatment devices for exhausted gas. The final purpose of the studies is clarifying the mechanism of the oil consumption and developing the method of its estimation. For the basic study, the mechanism of oil film generation on the piston skirt could be explained by hydrodynamic lubrication in our first and second reports [1, 2]. In this paper, the piston skirt was calculated using the measured piston motion to clarify the effect of the piston motion to the piston skirt oil film behavior.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 4th Report: The Measurement of Oil Pressure Under the Piston Oil Ring -

2006-10-16
2006-01-3440
Clarifying the mechanism of the oil consumption of engines is necessary for developing its estimation method. Oil moves upwards on the piston to the combustion chamber through ring sliding surfaces, ring backs and ring gaps. The mechanisms of oil upwards transport through the ring gaps are hardly analyzed. In this report, oil pressure just under the oil ring was successfully measured by newly developed method to clarify the oil transport mechanism at the ring gap. It was showed that the generated oil pressure pushed up the oil at the ring gap.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines -2nd report: Mechanism of Oil Film Generation on Piston Skirt-

2005-05-11
2005-01-2167
The requirement for the reduction of lubricating oil consumption of diesel engines has become increasingly important in reducing the effect of exhausted oil on after treatment devices for exhaust gas. In our first report, findings indicated that piston skirt length affected oil consumption, and they clearly showed that the oil film on the piston skirt should be considered in the calculation for oil consumption. In this report, the mechanism of oil film generation on the piston skirt is investigated. The oil film on the piston skirt is calculated and the effect of piston motion on the oil film region is clarified, i.e., considering the piston rotation around the top of the piston skirt at the anti-thrust side is important for the calculation of the oil film region.
Technical Paper

Combustion Experiments of Focusing Engine with Asymmetric Double-Piston System Leading to Relatively-Silent High Compression Ratios

2023-04-11
2023-01-0401
In our previous reports, we proposed a new focusing engine with high thermal efficiency based on relatively-silent high compression and nearly-complete air-insulation effect, which employs pulsed multi-jets of gas collided around chamber center. Local compression level due to the gas jets colliding around chamber center before reaction can be varied from zero to 100MPa and 3000K, by changing the number of jets and intake pressure. Relatively-silent high compression is possible, because region around chamber wall is at pressure level of traditional engines. This is suitable for various usages of automobiles, aerocrafts, and rockets, and also for various fuels including hydrogen, because high compression around chamber center leads to stable auto-ignition and potential of low NOx at very lean burning operation. We developed two types of focusing compression engines, without and with piston. For the new engine without piston, we obtained nearly-complete air-insulation and high thrust.
Technical Paper

Computational Optimization of Pressure Wave Reflection on the Piston Surface for Single Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets Leading to Noiseless-High Compression and Nearly-Complete Air-Insulation

2019-04-02
2019-01-0235
A new engine concept based on pulsed supermulti-jets colliding at a small area around the chamber center was proposed in our previous research. It was expected to provide noiseless high compression ratio and nearly-complete air-insulation on chamber walls, leading to high thermal efficiency. In the previous reports, three-dimensional computations for the unsteady compressible Navier-Stokes equation were conducted, which were qualitative because of using regular grid method. This time, we develop a new numerical code in order to quantitatively simulate the compression level caused by the jets colliding with pulse. It is achieved by applying a staggered grid method to improve conservatibity of physical quantities at very high compression in combustion phenomena. Computations at a simple condition were fairly agreed with a theoretical value. Computational results obtained for a complex geometry of an engine by the new code had less error than one with previous codes.
Technical Paper

Computations and Experiments for Clarifying Compression Level and Stability of Colliding Pulsed Supermulti-Jets in a Piston-Less Single-Point Autoignition Engine

2016-10-17
2016-01-2331
In recent years, a new type of engine (Fugine) based on the colliding of pulsed supermulti-jets was proposed by us, which indicates the potential for attaining very high thermal efficiencies and also less combustion noise. A prototype engine with eight nozzles for injecting octagonal pulsed supermulti-jets, which was developed with a low-cost gasoline injector and a double piston system, showed high thermal efficiency comparable to that of diesel engines and also less combustion noise comparable to that of traditional spark-ignition gasoline engines. Another type of prototype piston-less engine having fourteen bioctagonal nozzles was also developed and test results confirmed the occurrence of combustion, albeit it was unstable. In this work, time histories of pressure were measured in the combustion chamber of the piston-less prototype engine under a cold flow condition without combustion in order to examine the compression level obtained with the colliding supermulti-jets.
Technical Paper

Computations and Experiments of Single-Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets, Single Piston and Rotary Valve

2016-10-17
2016-01-2334
A new engine concept (Fugine) based on colliding pulsed supermulti-jets was proposed in recent years, which is expected to provide high thermal efficiencies over 50% and less combustion noise. Theoretical analyses indicate a high potential for thermal efficiency over 60%. Three types of prototype engines have been developed. The first prototype engine based only on the colliding of pulsed supermulti-jets with fourteen nozzles has no piston compression, while the second type equipped with a low-cost gasoline injector in the suction port has a double piston system and eight jet nozzles. Combustion experiments conducted on the second prototype gasoline engine show high thermal efficiency similar to that of traditional diesel engines and lower combustion noise comparable to that of traditional spark-ignition gasoline engines.
Technical Paper

Design Guidelines of the Single-Point Auto-Ignition Engine based on Supermulti-Jets Colliding for High Thermal Efficiency and Low Noise: Obtained by Computational Experiments for a Small Strongly-Asymmetric Double-Piston Engine

2014-11-11
2014-32-0100
An inexpensive, lightweight, and relatively quiet engine reactor that has the potential to achieve thermal efficiency over 50% for small engines was proposed in our previous reports, which is achieved with colliding supermulti-jets that create air insulation to encase burned gas around the chamber center, avoiding contact with the chamber walls and piston surfaces. The colliding of pulse jets can maintain high pressure ratio for various air-fuel ratios, whereas traditional homogeneous compression engines due to piston cannot get high pressure ratio at stoichiometric condition. Emphasis is also placed on the fact that higher compression in this engine results in less combustion noise because of encasing effect. Here, a small prototype engine having supermulti-jets colliding with pulse and strongly-asymmetric double-piston system is examined by using computational experiments. Pulse can be generated by the double piston system of a short stroke of about 40mm.
Technical Paper

Experimental Study of Spark-Assisted Auto-Ignition Gasoline Engine with Octagonal Colliding Pulsed Supermulti-Jets and Asymmetric Double Piston Unit

2018-10-30
2018-32-0004
Much effort has been devoted to studies on auto-ignition engines of gasoline including homogeneous-charge combustion ignition engines over 30 years, which will lead to lower exhaust energy loss due to high-compression ratio and less dissipation loss due to throttle-less device. However, the big problem underlying gasoline auto-ignition is knocking phenomenon leading to strong noise and vibration. In order to overcome this problem, we propose the principle of colliding pulsed supermulti-jets. In a prototype engine developed by us, octagonal pulsed supermulti-jets collide and compress the air around the center point of combustion chamber, which leads to a hot spot area far from chamber walls. After generating the hot spot area, the mechanical compression of an asymmetric double piston unit is added in four-stroke operation, which brings auto-ignition of gasoline.
Technical Paper

Fundamental Combustion Experiments of a Piston-Less Single-Point Autoignition Gasoline Engine Based on Compression Due to Colliding of Pulsed Supermulti-Jets

2016-10-17
2016-01-2337
Computational and theoretical analyses for a new type of engine (Fugine), which was proposed by us based on the colliding of pulsed supermulti-jets, indicate a potential for very high thermal efficiencies and also less combustion noise. Three types of prototype engines were developed. One of them has a low-cost gasoline injector installed in the suction port and a double piston system in which eight octagonal supermulti-jets are injected and collide. Combustion experiments conducted on the prototype gasoline engine show high thermal efficiency comparable to that of diesel engines and less combustion noise comparable to that of traditional spark-ignition gasoline engines. This paper presents some combustion experiments of one of the other piston-less prototype engines having bi-octagonal pulsed multi-jets injected from fourteen nozzles.
Technical Paper

High Thermal Efficiency Obtained with a Single-Point Autoignition Gasoline Engine Prototype Having Pulsed Supermulti-Jets Colliding in an Asymmetric Double Piston Unit

2016-10-17
2016-01-2336
A single-point autoignition gasoline engine (Fugine) proposed by us previously has a strongly asymmetric double piston unit without poppet valves, in which pulsed multi-jets injected from eight suction nozzles collide around the combustion chamber center. Combustion experiments conducted on this engine at a low operating speed of 2000 rpm using gasoline as the test fuel under lean burn conditions showed both high thermal efficiency comparable to that of diesel engines and silent combustion comparable to that of conventional spark-ignition gasoline engines. This gasoline engine was tested with a weak level of point compression generated by negative pressure of about 0.04 MPa and also at an additional mechanical homogeneous compression ratio of about 8:1 without throttle valves. After single-point autoignition, turbulent flame propagation may occur at the later stage of heat release.
Technical Paper

Improvement of Combustion and Exhaust Gas Emissions in a Passenger Car Diesel Engine by Modification of Combustion Chamber Design

2006-10-16
2006-01-3435
Three types of combustion chamber configurations (Types A, B, and C) with compression ratio lower than that of the baseline were tested for improved performance and exhaust gas emissions from an inline-four-cylinder 1.7-liter common-rail diesel engine manufactured for use with passenger cars. First, three combustion chambers were examined numerically using CFD code. Second, engine tests were conducted by using Type B combustion chamber, which is expected to have the best performance and exhaust gas emissions of all. As a result, 80% of NOx emissions at both low and medium loads at 1500 rpm, the engine speed used frequently in the actual city driving, improved with nearly no degradation in smoke emissions and brake thermal efficiency. It was shown that a large amount of cooled EGR enables NOx-free combustion with long ignition delay.
Technical Paper

Mixture formation and combustion characteristics of directly injected LPG spray

2003-05-19
2003-01-1917
It has been recognized that alternative fuels such as liquid petroleum gas (LPG) has less polluting combustion characteristics than diesel fuel. Direct-injection stratified-charge combustion LPG engines with spark-ignition can potentially replace conventional diesel engines by achieving a more efficient combustion with less pollution. However, there are many unknowns regarding LPG spray mixture formation and combustion in the engine cylinder thus making the development of high-efficiency LPG engines difficult. In this study, LPG was injected into a high pressure and temperature atmosphere inside a constant volume chamber to reproduce the stratification processes in the engine cylinder. The spray was made to hit an impingement wall with a similar profile as a piston bowl. Spray images were taken using the Schlieren and laser induced fluorescence (LIF) method to analyze spray penetration and evaporation characteristics.
Technical Paper

Research on Reduction of Piston Vibration by Providing Granular Dampers Inside the Lattice Structure

2023-05-08
2023-01-1149
A high compression ratio is an effective means for improving the thermal efficiency of an internal combustion engines. However, a high compression ratio leads to a rapid rise in the combustion pressure, as it causes a high impulse force. The impulse force generates vibrations and noise by spreading in the engine. Therefore, reducing the vibration of the combustion (which increases as the compression ratio increases) can improve the thermal efficiency while using the same technology. We are conducting model-based research on technologies for reducing combustion vibration by applying a granular damper to a piston. To efficiently reduce the vibration, we suppress it directly with the piston, i.e., the source of the vibration. Thus, the damping effect is maximized within a minimized countermeasure range.
Technical Paper

Two Prototype Engines with Colliding and Compression of Pulsed Supermulti-Jets through a Focusing Process, Leading to Nearly Complete Air Insulation and Relatively Silent High Compression for Automobiles, Motorcycles, Aircrafts, and Rockets

2020-04-14
2020-01-0837
We have proposed the engine featuring a new compressive combustion principle based on pulsed supermulti-jets colliding through a focusing process in which the jets are injected from the chamber walls to the chamber center. This principle has the potential for achieving relatively silent high compression around the chamber center because autoignition occurs far from the chamber walls and also for stabilizing ignition due to this plug-less approach without heat loss on mechanical plugs including compulsory plasma ignition systems. Then, burned high temperature gas is encased by nearly complete air insulation, because the compressive flow shrinking in focusing process gets over expansion flow generated by combustion.
Technical Paper

Two Small Prototype Engines Developed based on Pulsed Supermulti-Jets Colliding: Having a Potential of Thermal Efficiency Over 60% with Satisfactory Strength of Structure

2014-11-11
2014-32-0099
In our previous reports based on computations and fluid dynamic theory, we proposed a new compressive combustion principle for an inexpensive and relatively quiet engine reactor that has the potential to achieve thermal efficiency over 50% even for small combustion chambers having less than 100 cc. This can be achieved with colliding supermulti-jets that create complete air insulation to encase burned gas around the chamber center. We originally developed two small prototype engine systems for gasoline. First one with one rotary valve for pulsating intake flow and sixteen nozzles of jets colliding has no pistons. Next, we developed the second one having a strongly-asymmetric double piston system with the supermulti-jets colliding, although there are no poppet valves. The second prototype engine can vary point-compression strength due to the supermulti-jets and homogeneous compression level due to piston, by changing phase and size of two gears.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
X