Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Aortic Mechanics in High-Speed Racing Crashes

2012-04-16
2012-01-0101
Auto racing has been in vogue from the time automobiles were first built. With the dawn of modern cars came higher engine capacities; the speeds involved in these races and crashes increased as well. However, the advent of passive restraint systems such as the helmet, HANS (Head and Neck Support device), multi-point harness system, roll cage, side and frontal crush zones, racing seats, fire retardant suits, and soft-wall technology, have greatly improved the survivability of the drivers in high-speed racing crashes. Three left lateral crashes from Begeman and Melvin (2002), Case #LAS12, #IND14 and #99TX were used as inputs to the Wayne State Human Body Model (WSHBM) in a simulated racing buck. Twelve simulations with delta-v, six-point harness and shoulder pad as design variables were analyzed for the average maximum principal strain (AMPS) in the aorta. The average AMPS for the high-speed crashes were 0.1551±0.0172 while the average maximum pressure was 110.50±4.25 kPa.
X