Refine Your Search

Topic

Author

Search Results

Journal Article

Vehicle and Occupant Safety Protection CAE Simulation

2010-04-12
2010-01-1319
The objective of this research is to investigate the effect of the blast load on the vehicle and occupant and identify the sensitivity of the vehicle parameters to the blast load, therefore figure out the design solution to protect the vehicle and occupant. CAE explicit commercial code, LSDYNA, is applied in this research with adopting CONWEP method for the blast load. The LSDYNA 95th percentile Hybrid III dummy model is used for occupant simulation. Seat, seat belt, and underbody and underbody armor are interested areas in the design to meet the survivability and weight target. The results show the protection can be effectively achieved through employing the new design method in three areas mentioned above.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine

1997-02-24
971014
An experimental study was performed, using cycle-resolved laser Doppler velocimetry (LDV) technique, to characterize the exhaust flow structure inside a catalytic converter retro-fitted to a firing four-cylinder gasoline engine over different operating conditions. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for LDV measurements. It was found that in the front plane of the catalytic monolith, the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions. Under unloaded condition, four pairs of major peaks are clearly observed in the time history of the velocity, which correspond to the main exhaust events of each individual cylinder.
Technical Paper

Transient Engine and Piston Friction During Starting

1992-10-01
922197
The instantaneous frictional torque (IFT) of the engine and the piston-ring assembly frictional force (PRAFF) were determined during cranking and starting of a direct injection single cylinder diesel engine. The measurements included the cylinder gas pressure, the instantaneous torque of the electric starter, the angular velocity of the crankshaft and the axial force on the connecting rod. The engine and piston friction were determined every crank angle degree for all the cycles from the time the starter was engaged to the time the engine reached the idling speed. The data was analyzed and a comparison was made between the friction in successive cycles.
Technical Paper

Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts

1999-10-10
99SC04
The purpose of this study is to help understand the thoracic response and injury mechanisms in high-energy, limited-stroke, lateral velocity pulse impacts to the human chest wall. To impart such impacts, a linear impactor was developed which had a limited stroke and minimally decreased velocity during impact. The peak impact velocity was 5.6 ± 0.3 m/s. A series of BioSID and cadaver tests were conducted to measure biomechanical response and injury data. The conflicting effects of padding on increased deflection and decreased acceleration were demonstrated in tests with BioSID and cadavers. The results of tests conducted on six cadavers were used to test several proposed injury criteria for side impact. Linear regression was used to correlate each injury criterion to the number of rib fractures. This test methodology captured and supported a contrasting trend of increased chest deflection and decreased TTI when padding was introduced.
Technical Paper

The Influence of Surrogate Blood Vessels on the Impact Response of a Physical Model of the Brain

2004-11-01
2004-22-0012
Cerebral blood vessels are an integral part of the brain and may play a role in the response of the brain to impact. The purpose of this study was to quantify the effects of surrogate vessels on the deformation patterns of a physical model of the brain under various impact conditions. Silicone gel and tubing were used as surrogates for brain tissue and blood vessels, respectively. Two aluminum cylinders representing a coronal section of the brain were constructed. One cylinder was filled with silicone gel only, and the other was filled with silicone gel and silicone tubing arranged in the radial direction in the peripheral region. An array of markers was embedded in the gel in both cylinders to facilitate strain calculation via high-speed video analysis. Both cylinders were simultaneously subjected to a combination of linear and angular acceleration using a two-segment pendulum.
Technical Paper

Temperature Control of Water with Heating, Cooling and Mixing in a Process with Recycle Loop

2014-04-01
2014-01-0652
A hot and cold water mixing process with a steam condenser and a chilled water heat exchanger is set up for an engine EGR fouling test. The test rig has water recycled in the loop of a pump, heat exchangers, a three-way mixing valve, and a test EGR unit. The target unit temperature is controlled by a heating, cooling and mixing process with individual valves regulating the flow-rate of saturated steam, chilled water and mixing ratio. The challenges in control design are the dead-time, interaction, nonlinearity and multivariable characteristics of heat exchangers, plus the flow recycle in the system. A systems method is applied to extract a simple linear model for control design. The method avoids the nonlinearity and interaction among different temperatures at inlet, outlet and flow-rate. The test data proves the effectiveness of systems analysis and modeling methodology. As a result, the first-order linear model facilitates the controller design.
Technical Paper

Statistical Model and Simulation of Engine Torque and Speed Correlation

2001-09-24
2001-01-3686
Even under steady state operating conditions, the pressure variation in individual cylinders, and the corresponding gas-pressure torque are subjected to small random fluctuations from cycle to cycle. The gas-pressure torque of a cylinder may be expressed as a sum of harmonically variable components, each harmonic being affected by these fluctuations. A probabilistic model of the vector interpreting such a harmonic component is developed and used to determine the statistical parameters of the resultant random vector representing the corresponding harmonic order of the engine torque. At the low frequencies of the lowest harmonic orders of the engine torque the crankshaft behaves like a rigid body. This behavior permits to correlate the statistical parameters of the same harmonic components of the resultant torque and of the measured engine speed. This correlation is proved by experiments and used to identify faulty cylinders.
Technical Paper

Starting of Diesel Engines: Uncontrolled Fuel Injection Problems

1986-02-01
860253
Many problems can develop from the uncontrolled fuel injection during cranking and starting of diesel engines. Some of the problems are related to excessive wear as a result of the high peak pressures reached upon combustion after misfiring, the relatively low rotating speeds and the lack of formation of a lubricating oil film between the interacting surfaces. Another problem is the emission of high amounts of unburned hydrocarbons and white smoke. Experimental results are given for a single cylinder and a multicylinder diesel engine, for the instantaneous angular velocity and cylinder pressures from the starter-on point until the engine fires. The causes of misfiring during cranking are investigated. The role of the increased blow-by gases on the autoignition process at the low cranking speeds is analyzed both analytically and experimentally. The contribution of the instantaneous angular velocity at the time of injection, on the autoignition process is investigated.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Simultaneous In-Cylinder Surface Temperature Measurements with Thermocouple, Laser-induced Phosphorescence, and Dual Wavelength Infrared Diagnostic Techniques in an Optical Engine

2015-04-14
2015-01-1658
As engine efficiency targets continue to rise, additional improvements must consider reduction of heat transfer losses. The development of advanced heat transfer models and realistic boundary conditions for simulation based engine design both require accurate in-cylinder wall temperature measurements. A novel dual wavelength infrared diagnostic has been developed to measure in-cylinder surface temperatures with high temporal resolution. The diagnostic has the capability to measure low amplitude, high frequency temperature variations, such as those occurring during the gas exchange process. The dual wavelength ratio method has the benefit of correcting for background scattering reflections and the emission from the optical window itself. The assumption that background effects are relatively constant during an engine cycle is shown to be valid over a range of intake conditions during motoring.
Technical Paper

Simulation of the Effect of Recirculated Gases on Ignition Delay During Cold Starting of a Direct Injection Diesel Engine

2011-04-12
2011-01-0838
Simulations using CFD and chemical kinetics models have been applied to gain a better understanding of the effect of the recirculated gases on the autoignition process during cold starting of a direct injection diesel engine. The cranking gases recirculated (CGR) contain fuel vapor and partial oxidation products which affect the autoignition process in different ways. Some hydrocarbons (HCs) species enhance the reaction rates and reduce ignition delay. Meanwhile other HCs species and the partial oxidation products of the autoignition process have an opposing effect. The simulation covered a wide range of the hydrocarbons and aldehydes concentrations and their effect on the ignition delay in a 1.2L Ford DIATA 4-cylinders, water cooled, turbocharged and intercooled diesel engine. The simulated opposing effects of HCs and HCHO on the ignition delay are validated by experimental results at room temperature.
Technical Paper

Shear Stress Distribution in the Porcine Brain due to Rotational Impact

1994-11-01
942214
Two-dimensional finite element models for three coronal sections of the porcine brain have been developed and the results were compared with injury data from animal experiments performed at the University of Pennsylvania (Ross et al, 1994). The models consisted of a three-layered skull, dura, CSF, white matter, gray matter and ventricles. Model I, a section at the septal nuclei and anterior commissure level, contains 490 solid elements and 108 membrane elements. Model II, a section at the rostral-thalamic level, contains 644 solid elements and 130 membrane elements. Model III, a section at the caudal hippocampal level, contains 548 solid elements and 104 membrane elements. Plane strain conditions were assumed for all models. Material properties of the brain were taken from previous human brain models, but the white matter was assumed to be about 60% stronger than the gray matter with the same Poisson's ratio.
Journal Article

On-Board Fuel Identification using Artificial Neural Networks

2014-04-01
2014-01-1345
On-board fuel identification is important to ensure engine safe operation, similar power output, fuel economy and emissions levels when different fuels are used. Real-time detection of physical and chemical properties of the fuel requires the development of identifying techniques based on a simple, non-intrusive sensor. The measured crankshaft speed signal is already available on series engine and can be utilized to estimate at least one of the essential combustion parameters such as peak pressure and its location, rate of cylinder pressure rise and start of combustion, which are an indicative of the ignition properties of the fuel. Using a dynamic model of the crankshaft numerous methods have been previously developed to identify the fuel type but all with limited applications in terms of number of cylinders and computational resources for real time control.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Multi Sensing Fuel Injector for Electronically Controlled Diesel Engines

2011-04-12
2011-01-0936
Internal combustion engine control requires feedback signals to the ECU in order to meet the increasingly stringent emissions standards. Reducing the number of on-board sensors needed for proper engine performance would reduce the cost and complexity of the electronic system. This paper presents a new technique to enable one engine element, the fuel injector, to perform multiple sensing tasks in addition to its primary task of delivering the fuel into the cylinder. The injector is instrumented within an electric circuit to produce a signal indicative of the ionization produced from the combustion process in electronically controlled diesel engines. The output of the multi sensing fuel injector (MSFI) system can be used as a feedback signal to the engine control unit (ECU) for injection timing and diagnostics of the injection and combustion processes.
Technical Paper

Modeling Diffuser-Monolith Flows and Its Implications to Automotive Catalytic Converter Design

1992-06-01
921093
Most current automotive catalytic converters use diffusers to distribute the flow field inside the monolithic bricks where catalysis takes place. While the characteristics and performance of a simple diffuser flow are well documented, the influence of downstream brick resistance is not clear. In this paper the trade-off between flow-uniformity and pressure drop of an axisymmetric automotive catalytic converters is studied numerically. The monolithic brick resistance is formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. A distribution index was formulated to quantify the degree of non-uniformity in selected test cases. The test matrix covers a range of different diffuser angles and flow resistances (brick types). For simplicity, an axisymmetric geometry is chosen. Flow distribution within the monolith was found to depend strongly on diffuser performance, which is modified by brick resistance.
Technical Paper

In-Situ Phase-Shift Measurement of the Time-Resolved UBHC Emissions

1995-02-01
950161
The UBHC emissions during cold starting need to be controlled in order to meet the future stringent standards. This requires a better understanding of the characteristics of the time resolved UBHC signal measured by a high frequency FID and its phasing with respect to the valve events. The computer program supplied with the instrument and currently used to compute the phase shift has many uncertainties due to the unsteady nature of engine operation during starting. A new technique is developed to measure the in-situ phase shift of the UBHC signal under the transient thermodynamic and dynamic conditions of the engine. The UBHC concentration is measured at two locations in the exhaust manifold of one cylinder in a multicylinder port injected gasoline engine. The two locations are 77 mm apart. The downstream probe is positioned opposite to a solenoid-operated injector which delivers a gaseous jet of hydrocarbon-free nitrogen upon command.
Journal Article

In-Cylinder Wall Temperature Influence on Unburned Hydrocarbon Emissions During Transitional Period in an Optical Engine Using a Laser-Induced Phosphorescence Technique

2014-04-01
2014-01-1373
Emissions of Unburned Hydrocarbons (UHC) from diesel engines are a particular concern during the starting process, when after-treatment devices are typically below optimal operating temperatures. Drivability in the subsequent warm-up phase is also impaired by large cyclic fluctuations in mean effective pressure (MEP). This paper discusses in-cylinder wall temperature influence on unburned hydrocarbon emissions and combustion stability during the starting and warm-up process in an optical engine. A laser-induced phosphorescence technique is used for quantitative measurements of in-cylinder wall temperatures just prior to start of injection (SOI), which are correlated to engine out UHC emission mole fractions and combustion phasing during starting sequences over a range of charge densities, at a fixed fueling rate. Squish zone cylinder wall temperature shows significant influence on engine out UHC emissions during the warm-up process.
Technical Paper

Hybrid Electric Vehicle Architecture Selection for EcoCAR 3 Competition

2015-04-14
2015-01-1228
This paper presents the work performed by the Wayne State University (WSU) EcoCAR 3 student design competition team in its preparation for the hybrid electric vehicle architecture selection process. This process is recognized as one of the most pivotal steps in the EcoCAR 3 competition. With a key lesson learned from participation in EcoCAR 2 on “truly learning how to learn,” the team held additional training sessions on architecture selection tools and exercises with the goal of improving both fundamental and procedural skills. The work conducted represents a combination of the architecture feasibility study and final selection process in terms of content and procedure, respectively. At the end of this study the team was able to identify four potentially viable hybrid powertrain architectures, and thoroughly analyze the performance and packaging feasibility of various component options.
X