Refine Your Search

Topic

Author

Search Results

Technical Paper

White Smoke Emissions Under Cold Starting of Diesel Engines

1996-02-01
960249
More stringent regulations have been enforced over the past few years on diesel exhaust emissions. White smoke emission, a characteristic of diesel engines during cold starting, needs to be controlled in order to meet these regulations. This study investigates the sources and constituents of white smoke. The effects of fuel properties, design and operating parameters on the formation and emissions of white smoke are discussed. A new technique is developed to measure the real time gaseous hydrocarbons (HC) as well as the solid and liquid particulates. Experiments were conducted on a single cylinder direct injection diesel engine in a cold room. The gaseous HC emissions are measured using a high frequency response flame ionization detector. The liquid and solid particulates are collected on a paper filter placed upstream of the sampling line of the FID and their masses are determined.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine

1997-02-24
971014
An experimental study was performed, using cycle-resolved laser Doppler velocimetry (LDV) technique, to characterize the exhaust flow structure inside a catalytic converter retro-fitted to a firing four-cylinder gasoline engine over different operating conditions. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for LDV measurements. It was found that in the front plane of the catalytic monolith, the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions. Under unloaded condition, four pairs of major peaks are clearly observed in the time history of the velocity, which correspond to the main exhaust events of each individual cylinder.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Technical Paper

The Spray Characteristics of Automotive Port Fuel Injection-A Critical Reviews

1995-02-01
950506
The requirement of meeting the emission standards for low emission vehicles (LEV) and ultra low emission vehicles (ULEV) has resulted in a more stringent examination of all elements of the automotive internal combustion engine that contribute to emission formation. The fuel system, as one of the key elements, is the subject of renewed and expanded research in an effort to understand and optimize the important parameters. Only through such enhanced understanding of the basic processes of fuel injection, metering, atomization, targeting, pulse-to-pulse variability and induction of fuel under cold, normal and elevated temperature conditions can the very low emissions of today's vehicles be further reduced to ULEV values.
Technical Paper

The Effect of Fuel-Line Pressure Perturbation on the Spray Atomization Characteristics of Automotive Port Fuel Injectors

1995-10-01
952486
An experimental study was carried out to characterize the spray atomization process of automotive port fuel injectors retrofitted to a novel pressure modulation piezoelectric driver, which generates a pressure perturbation inside the fuel line. Unlike many other piezoelectric atomizers, this unit does not drive the nozzle directly. It has a small size and can be installed easily between regular port injector and fuel lines. There is no extra control difficulty with this system since the fuel injection rate and injection timing are controlled by the original fuel-metering valve. The global spray structures were characterized using the planar laser Mie scattering (PLMS) technique and the spray atomization processes were quantified using phase Doppler anemometry (PDA) technique.
Technical Paper

The Development of an Electronic Control Unit for a High Pressure Common Rail Diesel/Natural Gas Dual-Fuel Engine

2014-04-01
2014-01-1168
Natural gas has been considered to be one of the most promising alternative fuels due to its lower NOx and soot emissions, less carbon footprint as well as attractive price. Furthermore, higher octane number makes it suitable for high compression ratio application compared with other gaseous fuels. For better economical and lower emissions, a turbocharged, four strokes, direct injection, high pressure common rail diesel engine has been converted into a diesel/natural gas dual-fuel engine. For dual-fuel engine operation, natural gas as the main fuel is sequentially injected into intake manifold, and a very small amount of diesel is directly injected into cylinder as the ignition source. In this paper, a dual-fuel electronic control unit (ECU) based on the PowerPC 32-bit microprocessor was developed. It cooperates with the original diesel ECU to control the fuel injection of the diesel/natural gas dual-fuel engine.
Technical Paper

Temperature Effect on Performance of a Commercial Fuel Filter for Biodiesel Blends with ULSD

2010-04-12
2010-01-0473
Biodiesel offers a potentially viable alternative fuel source for diesel automotive applications. However, biodiesel may present problems at colder temperatures due to the crystallization of fatty acid methyl esters and precipitation of other components, such as unreacted triglycerides and sterol glycosides in biodiesel. At lower temperatures, the fuel gels until it solidifies in the fuel lines, clogging the fuel filter, and shutting down the engine. A laboratory-based continuous loop fuel system was utilized to determine the flow properties at low temperatures of biodiesel in B100, B20, and B10 blends for soybean and choice white grease (pig fat) biodiesel fuel. The continuous loop fuel delivery system was designed to be similar to those that can be found in engines and vehicles currently in use, and provided a mechanical pump or an electric pump as a means to simulate systems found in the different types of vehicles.
Technical Paper

Temperature Control of Water with Heating, Cooling and Mixing in a Process with Recycle Loop

2014-04-01
2014-01-0652
A hot and cold water mixing process with a steam condenser and a chilled water heat exchanger is set up for an engine EGR fouling test. The test rig has water recycled in the loop of a pump, heat exchangers, a three-way mixing valve, and a test EGR unit. The target unit temperature is controlled by a heating, cooling and mixing process with individual valves regulating the flow-rate of saturated steam, chilled water and mixing ratio. The challenges in control design are the dead-time, interaction, nonlinearity and multivariable characteristics of heat exchangers, plus the flow recycle in the system. A systems method is applied to extract a simple linear model for control design. The method avoids the nonlinearity and interaction among different temperatures at inlet, outlet and flow-rate. The test data proves the effectiveness of systems analysis and modeling methodology. As a result, the first-order linear model facilitates the controller design.
Technical Paper

Starting of Diesel Engines: Uncontrolled Fuel Injection Problems

1986-02-01
860253
Many problems can develop from the uncontrolled fuel injection during cranking and starting of diesel engines. Some of the problems are related to excessive wear as a result of the high peak pressures reached upon combustion after misfiring, the relatively low rotating speeds and the lack of formation of a lubricating oil film between the interacting surfaces. Another problem is the emission of high amounts of unburned hydrocarbons and white smoke. Experimental results are given for a single cylinder and a multicylinder diesel engine, for the instantaneous angular velocity and cylinder pressures from the starter-on point until the engine fires. The causes of misfiring during cranking are investigated. The role of the increased blow-by gases on the autoignition process at the low cranking speeds is analyzed both analytically and experimentally. The contribution of the instantaneous angular velocity at the time of injection, on the autoignition process is investigated.
Technical Paper

Simulation of the Effect of Recirculated Gases on Ignition Delay During Cold Starting of a Direct Injection Diesel Engine

2011-04-12
2011-01-0838
Simulations using CFD and chemical kinetics models have been applied to gain a better understanding of the effect of the recirculated gases on the autoignition process during cold starting of a direct injection diesel engine. The cranking gases recirculated (CGR) contain fuel vapor and partial oxidation products which affect the autoignition process in different ways. Some hydrocarbons (HCs) species enhance the reaction rates and reduce ignition delay. Meanwhile other HCs species and the partial oxidation products of the autoignition process have an opposing effect. The simulation covered a wide range of the hydrocarbons and aldehydes concentrations and their effect on the ignition delay in a 1.2L Ford DIATA 4-cylinders, water cooled, turbocharged and intercooled diesel engine. The simulated opposing effects of HCs and HCHO on the ignition delay are validated by experimental results at room temperature.
Journal Article

On-Board Fuel Identification using Artificial Neural Networks

2014-04-01
2014-01-1345
On-board fuel identification is important to ensure engine safe operation, similar power output, fuel economy and emissions levels when different fuels are used. Real-time detection of physical and chemical properties of the fuel requires the development of identifying techniques based on a simple, non-intrusive sensor. The measured crankshaft speed signal is already available on series engine and can be utilized to estimate at least one of the essential combustion parameters such as peak pressure and its location, rate of cylinder pressure rise and start of combustion, which are an indicative of the ignition properties of the fuel. Using a dynamic model of the crankshaft numerous methods have been previously developed to identify the fuel type but all with limited applications in terms of number of cylinders and computational resources for real time control.
Technical Paper

Numerical Prediction and Validation of Fuel Spray Behavior in a Gasoline Direct-Injection Engine

2001-09-24
2001-01-3668
Analysis of flow field and charge distribution in a gasoline direct-injection (GDI) engine is performed by a modified version of the KIVA code. A particle-based spray model is proposed to simulate a swirl-type hollow-cone spray in a GDI engine. Spray droplets are assumed to be fully atomized and introduced at the sheet breakup locations as determined by experimental correlations and energy conservation. The effects of the fuel injection parameters such as spray cone angle and ambient pressure are examined for different injectors and injection conditions. Results show reasonable agreement with the measurements for penetration, dispersion, global shape, droplet velocity and size distribution by Phase Doppler Particle Anemometry(PDPA) in a constant-volume chamber. The test engine is a 4-stroke 4-valve optically accessible single-cylinder engine with a pent-roof head and tumble ports.
Technical Paper

Noise Radiation from Axial Flow Fans

1997-05-20
971919
A semi-empirical formula [1] for predicting noise spectra of an engine cooling fan assembly is developed. In deriving this formulation it is assumed that sound radiation from an axial flow fan is primarily due to fluctuating forces exerted on the fan blade surface. These fluctuating forces are correlated to the total lift force exerted on the fan blade, and is approximated by pressure pulses that decay both in space and time. The radiated acoustic pressure is then expressed in terms of superposition of contributions from these pressure pulses, and the corresponding line spectrum is obtained by taking a Fourier series expansion. To simulate the broad band sounds, a normal distribution-like shape function is designed which divides the frequency into consecutive bands centered at the blade passage frequency and its harmonics. The amplitude of this shape function at the center frequency is unity but decays exponentially. The decay rate decreases with an increase in the number of bands.
Technical Paper

Multi Sensing Fuel Injector for Electronically Controlled Diesel Engines

2011-04-12
2011-01-0936
Internal combustion engine control requires feedback signals to the ECU in order to meet the increasingly stringent emissions standards. Reducing the number of on-board sensors needed for proper engine performance would reduce the cost and complexity of the electronic system. This paper presents a new technique to enable one engine element, the fuel injector, to perform multiple sensing tasks in addition to its primary task of delivering the fuel into the cylinder. The injector is instrumented within an electric circuit to produce a signal indicative of the ionization produced from the combustion process in electronically controlled diesel engines. The output of the multi sensing fuel injector (MSFI) system can be used as a feedback signal to the engine control unit (ECU) for injection timing and diagnostics of the injection and combustion processes.
Technical Paper

Modeling Diffuser-Monolith Flows and Its Implications to Automotive Catalytic Converter Design

1992-06-01
921093
Most current automotive catalytic converters use diffusers to distribute the flow field inside the monolithic bricks where catalysis takes place. While the characteristics and performance of a simple diffuser flow are well documented, the influence of downstream brick resistance is not clear. In this paper the trade-off between flow-uniformity and pressure drop of an axisymmetric automotive catalytic converters is studied numerically. The monolithic brick resistance is formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. A distribution index was formulated to quantify the degree of non-uniformity in selected test cases. The test matrix covers a range of different diffuser angles and flow resistances (brick types). For simplicity, an axisymmetric geometry is chosen. Flow distribution within the monolith was found to depend strongly on diffuser performance, which is modified by brick resistance.
Journal Article

In-Cylinder Wall Temperature Influence on Unburned Hydrocarbon Emissions During Transitional Period in an Optical Engine Using a Laser-Induced Phosphorescence Technique

2014-04-01
2014-01-1373
Emissions of Unburned Hydrocarbons (UHC) from diesel engines are a particular concern during the starting process, when after-treatment devices are typically below optimal operating temperatures. Drivability in the subsequent warm-up phase is also impaired by large cyclic fluctuations in mean effective pressure (MEP). This paper discusses in-cylinder wall temperature influence on unburned hydrocarbon emissions and combustion stability during the starting and warm-up process in an optical engine. A laser-induced phosphorescence technique is used for quantitative measurements of in-cylinder wall temperatures just prior to start of injection (SOI), which are correlated to engine out UHC emission mole fractions and combustion phasing during starting sequences over a range of charge densities, at a fixed fueling rate. Squish zone cylinder wall temperature shows significant influence on engine out UHC emissions during the warm-up process.
Technical Paper

Exploration of the Contribution of the Start/Stop Transients in HEV Operation and Emissions

2000-08-21
2000-01-3086
The effects of the start/stop (S/S) transients on the Hybrid Electric Vehicle (HEV) operation and emissions are explored in this study. The frequency with which the engine starts and stops during an urban driving cycle is estimated by using the NREL's Advanced Vehicle Simulator software (ADVISOR). Furthermore, several tests were conducted on single-cylinder and multi-cylinder direct injection diesel engines in order to measure the cycle-resolved mole fractions of the hydrocarbons and nitric oxide exhaust emissions under frequent start/stop mode of operation. The frictional losses in engine in its entirety as well as in its components are also determined. In addition, the dynamic behavior of different high pressure fuel injection systems are investigated under the start and stop mode of operation.
Technical Paper

Experimental and Computational Analysis of Impact of Self Recirculation Casing Treatment on Turbocharger Compressor

2010-04-12
2010-01-1224
Self recirculation casing treatment has been showed to be an effective technique to extend the flow range of the compressor. However, the mechanism of its surge extension on turbocharger compressor is less understood. Investigation and comparison of internal flow filed will help to understand its impact on the compressor performance. In present study, experimentally validated CFD analysis was employed to study the mechanism of surge extension on the turbocharger compressor. Firstly a turbocharger compressor with replaceable inserts near the shroud of the impeller inlet was designed so that the overall performance of the compressor with and without self recirculation casing treatment could be tested and compared. Two different self recirculation casing treatments had been tested: one is conventional self recirculation casing treatment and the other one has deswirl vanes inside the casing treatment passage.
Journal Article

Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

2014-04-01
2014-01-1376
This paper presents the results of an experimental investigation on a single cylinder engine to validate a two-component JP-8 surrogate. The two-component surrogate was chosen based on a previous investigation where the key properties, such as DCN, volatility, density, and lower heating value, of the surrogate were matched with those of the target JP-8. The matching of the auto-ignition, combustion, and emission characteristics of the surrogate with JP-8 was investigated in an actual diesel engine environment. The engine tests for the validation of the surrogate were conducted at an engine speed of 1500 rpm, a load of 3 bar, and different injection timings. The results for the cylinder gas pressure, ignition delay period, rate of heat release, and the CO, HC, and NOx emissions showed a good match between the surrogate and the target JP-8. However, the engine-out particulate matter for the surrogate was lower than that for the JP-8 at all tested conditions.
X