Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

Visualization of Entry Flow Separation for Oscillating Flow in Tubes

1992-08-03
929466
Results of visualization experiments are presented for the entry flow to circular tubes under oscillatory flow conditions. Geometries and conditions have been chosen to simulate the flow in a Stirling engine with straight heat exchanger tubes. Since oscillating flow in Stirling engines is unavoidably strongly influenced by the entry conditions, such documentation is useful when engine designs are being considered and is needed when test results are being interpreted. Two entry geometries are explored, one with unrestricted entry to a squared-edged tube and another with entry from one side. The visualization technique is by illumination of neutrally-buoyant, helium-filled soap bubbles with laser light, capturing with still photography. Each picture is an ensemble of exposures from 150 cycles. Each entry to the ensemble is taken at the same range in crank position, typically five degrees. Thus, one picture may visualize the flow from 75 to 80 degrees of crank rotation, for instance.
Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
Technical Paper

Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray

2001-05-07
2001-01-2023
The direct injection spray-wall interactions were investigated experimentally using high-speed laser-sheet imaging, shadowgraphy, wetted footprints and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, at three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall.
Technical Paper

Transient Particulate Emissions from Diesel Buses During the Central Business District Cycle

1996-02-01
960251
Particulate emissions from heavy-duty buses were measured in real time under conditions encountered during the standard Central Business District (CBD) driving cycle. The buses tested were equipped with 1994 Detroit Diesel Engine Corporation 6V92-TA engines, and some included after treatment devices on the exhaust. Instantaneous, time-resolved measurements of CO2 and amorphous carbon concentrations were obtained using an optical extinction technique and compared to simultaneous results obtained using conventional dilution tunnel sampling methods. Good agreement was obtained between the real-time extinction measurements and the diluted CO2 and cycle-integrated filter measurements. The instantaneous measurements revealed that acceleration transients accounted for roughly 80% of the particulate mass emitted during the cycle but only about 45% of the fuel consumption.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Technical Paper

Trade Study of an Exploration Cooling Garment

2008-06-29
2008-01-1994
A trade study was conducted with a goal to develop relatively high TRL design concepts for an Exploration Cooling Garment (ExCG) that can accommodate larger metabolic loads and maintain physiological limits of the crewmembers health and work efficiency during all phases of exploration missions without hindering mobility. Effective personal cooling through use of an ExCG is critical in achieving safe and efficient missions. Crew thermoregulation not only impacts comfort during suited operations but also directly affects human performance. Since the ExCG is intimately worn and interfaces with comfort items, it is also critical to overall crewmember physical comfort. Both thermal and physical comfort are essential for the long term, continuous wear expected of the ExCG.
Technical Paper

Three-Dimensional Modeling of Soot and NO in a Direct-injection Diesel Engine

1995-02-01
950608
Results of comparisons of computed and measured soot and NO in a direct-injection Diesel engine are presented. The computations are carried out using a three-dimensional model for flows, sprays and combustion in Diesel engines. Autoignition of the Diesel spray is modeled using an equation for a progress variable which measures the local and instantaneous tendency of the fuel to autoignite. High temperature chemistry is modeled using a local chemical equilibrium model coupled to a combination of laminar kinetic and turbulent characteristic times. Soot formation is kinetically controlled and soot oxidation is represented by a model which has a combination of laminar kinetic and turbulent mixing times. Soot oxidation appears to be controlled near top-dead-center by mixing and by kinetics as the exhaust is approached. NO is modeled using the Zeldovich mechanism.
Technical Paper

Three-Dimensional Computations of Diesel Sprays in a Very High Pressure Chamber

1994-10-01
941896
Results of three-dimensional computations of non-vaporizing and vaporizing Diesel sprays in a very high pressure (up to 18.4 MPa without combustion) environment are presented. These pressures and corresponding density ratios of ambient gas to injected liquid are about a factor of two greater than those in current Diesel engines. The spray model incorporates a line source for drops, heat, mass and momentum exchange between the gas and liquid phases, turbulent dispersion of drops, collisions and coalescences, and drop breakup. The accuracy of the model is assessed by making comparisons of computed and measured spray penetrations. Reasonable agreement is obtained for a broad range of conditions. A scaling for time and axial distance clarifies these results.
Technical Paper

The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation

2003-10-27
2003-01-3179
Earlier work [1] shows that kinetics of Diesel soot oxidation is different from that of ethylene diffusion flame soot oxidation [2], possibly due to metals from lube oil. This study investigates the influence of metals on soot oxidation and the exhaust particle emissions using lube oil dosed fuel (2 % by volume). This method does not simulate normal lube oil consumption, but is used as a means of adding metals to particles for oxidation studies. This study also provides insight into the effect of systems that mix lube oil with fuel to minimize oil change service. The HTO-TDMA (High Temperature Oxidation-Tandem Differential Mobility Analyzer) technique [1] was used to measure the surface specific oxidation rate of Diesel particles over the temperature range 500-750 °C. Diesel particles sampled from the exhaust stream of a Diesel engine were size segregated by differential mobility and oxidized in situ in air in a heated flow tube of known residence time and temperature profile.
Technical Paper

The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements

1999-03-01
1999-01-1142
Particle size distribution and number concentration measurements have been made in the diluted exhaust of a medium-duty, turbocharged, aftercooled, direct-injection Diesel engine using a unique variable residence time micro-dilution system that allows systematic variation of dilution and sampling conditions, and a scanning mobility particle sizer (SMPS). The measurements show that the number concentrations in the nanoparticle (Dp < 50 nm) and the ultrafine (Dp < 100 nm) ranges are very sensitive to dilution conditions and fuel sulfur content. Changes in concentration of up to two orders of magnitude have been observed when conditions are varied over the range that might be encountered in typical laboratory dilution systems. For example, at a dilution ratio of 12, dilution temperature of 32 °C, and a residence time of 1000 ms, the number concentrations reach 6 × 108 part.
Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Technical Paper

Strategies to Gain the Loss in Power in a Military Diesel Engine Using JP-8 Instead of ULSD

2020-04-14
2020-01-0804
The Department of Defense (DOD) has adopted the use of JP-8 under the “single battlefield fuel” policy. Fuel properties of JP-8 which are different from ULSD include cetane number, density, heating value and compressibility (Bulk modulus). While JP8 has advantages compared to ULSD, related to storage, combustion and lower soot emissions, its use cause a drop in the peak power in some military diesel engines. The engines that has loss in power use the Hydraulically actuated Electronic Unit Injection (HEUI) fuel system. The paper explains in details the operation of HEUI including fuel delivery into the injector and its compression to the high injection pressure before its delivery in the combustion chamber. The effect of fuel compressibility on the volume of the fuel that is injected into the combustion chamber is explained in details.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

Spark Ignition Engine Knock Detection Using In-Cylinder Optical Probes

1996-10-01
962103
Two types of in-cylinder optical probes were applied to a single cylinder CFR engine to detect knocking combustion. The first probe was integrated directly into the engine spark plug to monitor the radiation from burned gas in the combustion process. The second was built into a steel body and installed near the end gas region of the combustion chamber. It measured the radiant emission from the end gas in which knock originates. The measurements were centered in the near infrared region because thermal radiation from the combustion products was believed to be the main source of radiation from a spark ignition engine. As a result, ordinary photo detectors can be applied to the system to reduce its cost and complexity. It was found that the measured luminous intensity was strongly dependent upon the location of the optical sensor.
Technical Paper

Simulation-Based Cold-Start Control Strategy for a Diesel Engine with Common Rail Fuel System at Different Ambient Temperatures

2007-04-16
2007-01-0933
A new tool has been used to arrive at appropriate split injection strategy for reducing the cranking period during the cold start of a multi-cylinder engine at decreasing ambient temperatures. The concept behind this tool is that the combination of different injection parameters that produce the highest IMEP should be able to improve the cold startability of the diesel engine. In this work the following injection parameters were considered: 1) injection timing, 2) split injection fraction, 3) dwell time and 4) total fuel mass injected per cycle. A commercial engine cyclic simulation code has been modified for diesel engine cycle simulation at lower ambient temperatures. The code was used to develop IMEP control maps. The maps were used to identify the parameters that would give the best IMEP. The strategies that have been identified have been validated experimentally in a multi-cylinder diesel engine equipped with a common rail fuel injection system.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

Simulation and Experimental Measurement of CO2*, OH* and CH2O* Chemiluminescence from an Optical Diesel Engine Fueled with n-Heptane

2013-09-08
2013-24-0010
A means of validating numerical simulations has been developed which utilizes chemiluminescence measurements from an internal combustion engine. By incorporating OH*, CH2O* and CO2* chemiluminescence sub-mechanisms into a detailed n-heptane reaction mechanism, excited species concentration and chemiluminescence light emission were calculated. The modeled line-of-sight chemiluminescence emission allows a direct comparison of simulation results to experimentally measured chemiluminescence images obtained during combustion in an optically accessible compression ignition engine using neat n-heptane fuel. The spray model was calibrated using in-cylinder liquid penetration length Mie scattering measurements taken from the jets of the high-pressure piezo injector.
X