Refine Your Search

Topic

Author

Search Results

Journal Article

Using IAC Database for Longitudinal Study of Small to Medium Sized Automotive Industry Suppliers' Energy Intensity Changes

2013-04-08
2013-01-0833
Industries related to automotive manufacturing and its supply chain play a key role in leaving a carbon footprint during an automobile's life cycle. Per the report from Lawrence Berkeley National Laboratory (LBNL) in March, 2008 [1], “motor vehicle industry in the U.S. spends about $3.6 billion on energy annually.” The proposed research will focus on energy savings opportunities in automotive manufacturing and its supplier network. The US Department of Energy (DOE) funds 24 Industrial Assessment Centers (IAC) throughout the U.S. that conduct energy assessments at many of these facilities. The results of these assessments are summarized in a database maintained by Rutgers University which acts as the central management body for all the IACs. This research will present key concepts summarized from this database.
Technical Paper

Use of the West Virginia University Truck Test Cycle to Evaluate Emissions from Class 8 Trucks

1995-02-01
951016
Emissions from light duty vehicles have traditionally been measured using a chassis dynamometer, while heavy duty testing has been based on engine dynamometers. However, the need for in-use vehicle emissions data has led to the development of two transportable heavy duty chassis dynamometers capable of testing buses and heavy trucks. A test cycle has been developed for Class 8 trucks, which typically have unsyncronized transmissions. This test cycle has five peaks, each consisting of an acceleration, cruise period, and deceleration, with speeds and acceleration requirements that can be met by virtually all vehicles in common service. Termed the “WVU 5 peak truck test”, this 8 km (5 mile) cycle has been used to evaluate the emissions from diesel and ethanol powered over-the-road tractors and from diesel and ethanol powered snow plows, all with Detroit Diesel 6V92 engines.
Technical Paper

Turbocharging a Bi-Fuel Engine for Performance Equivalent to Gasoline

1994-10-01
942003
A bi-fuel engine capable of operating either on compressed natural gas (CNG) or gasoline is being developed for the transition to alternative fuel usage. A Saturn 1.9 liter 4-cylinder engine was selected as a base powerplant. A control system that allows closed-loop optimization of both fuel delivery and spark timing was developed. Stock performance and emissions of the engine, as well as performance and emissions with the new controller on gasoline and CNG, have been documented. CNG operation in an engine designed for gasoline results in power loss because of the lower volumetric efficiency with gaseous fuel use, yet such an engine does not take advantage of the higher knock resistance of CNG. It is the goal of this research to use the knock resistance of CNG to recover the associated power loss. The two methods considered for this include turbocharging with a variable boost wastegate and raising the compression ratio while employing variable valve timing.
Technical Paper

Thermodynamic implications of the Stiller-Smith Mechanism

1987-02-01
870615
The Stiller-Smith mechanism is a new mechanism for the translation of linear motion into rotary motion, and has been considered as an alternative to the conventional slider-crank mechanism in the design of internal combustion engines and piston compressors. Piston motion differs between the two mechanisms, being perfectly sinusoidal for the Stiller-Smith case. Plots of dimensionless volume and volume rate-change are presented for one engine cycle. It is argued that the different motion is important when considering rate-based processes such as heat transfer to a cylinder wall and chemical kinetics during combustion. This paper also addresses the fact that a Stiller-Smith engine will be easier to configure for adiabatic operation, with many attendant benefits.
Technical Paper

The Stiller-Smith Engine-The Dewelopment of a New Environment for High-Tech Materials

1987-01-20
870721
New high-tech materials which are anticipated to revolutionize the internal combustion engine are being created everyday. However, their actual utilization in existing engines has encountered numerous stumbling blocks. High piston sidewall forces and thermal stresses are some of the problems of primary concern. The Stiller-Smith Engine should provide an environment more conducive to the use of some of these materials. Absent from the Stiller-Smith Engine is a crankshaft, and thus a very different motion is observed. Since all parts in the Stiller-Smith Engine move in either linear or rotary fashion it is simple to balance. Additionally the use of linear connecting rod bearings changes the location of the sidewall forces thus providing an isolated combustion chamber more tolerant to brittle materials and potential adiabatic designs. Presented herein is the development of this new engine environment, from conceptualization to an outline of present and future research.
Technical Paper

The Future of the Internal Combustion Engine After “Diesel-Gate”

2017-07-10
2017-28-1933
The paper captures the recent events in relation with the Volkswagen (VW) Emissions Scandal and addresses the impact of this event on the future of power train development. The paper analyses the impact on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based technology. The operation of the United States Environmental Protection Agency (EPA), VW and the United States prosecutor, sparked by the action of the International Council on Clean Transportation (ICCT) is forcing the Original Equipment Manufacturers (OEM) towards everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) technology, and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
Journal Article

The Effect of Cetane Improvers and Biodiesel on Diesel Particulate Matter Size

2011-04-12
2011-01-0330
Heavy-duty diesel engines (HDDE), because of their widespread use and reputation of expelling excessive soot, have frequently been held responsible for excessive amounts of overall environmental particulate matter (PM). PM is a considerable contributor to air pollution, and a subject of primary concern to health and regulatory agencies worldwide. The U.S. Environmental Protection Agency (EPA) has provided PM emissions regulations and standards of measurement techniques since the 1980's. PM standards set forth by the EPA for HDDEs are based only on total mass, instead of size and/or concentration. The European Union adopted a particle number emission limit, and it may influence the U.S. EPA to adopt particle number or size limits in the future. The purpose of this research was to study the effects biodiesel blended fuel and cetane improvers have on particle size and number.
Technical Paper

The Design of a Bi-Fuel Engine Which Avoids the Penalties Associated with Natural Gas Operation

1995-02-01
950679
An alternative fuel that has demonstrated considerable potential in reducing emissions and crude oil dependence is compressed natural gas (CNG). A dedicated CNG vehicle suffers from the lack of an adequate number of fueling stations and the poor range limited by CNG storage technology. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. Although many such bi-fuel vehicles are in existence, historically they have employed older engine designs and made compromises in engine control parameters that can degrade performance relative to gasoline and increase emissions. A modern production engine, a 1992 Saturn 1.9 liter 16 valve powerplant, is being optimized for operation on each fuel to realize the full potential of CNG in a bi-fuel system. CNG operation in an engine designed for gasoline typically suffers from reduced power, due in part to displacement of air by gaseous fuel.
Technical Paper

Speciation of Hydrocarbon Emissions from a Medium Duty Diesel Engine

1996-02-01
960322
Growing concern over ground-level ozone and its role in smog formation has resulted in extensive investigation into identifying ozone sources. Motor vehicle exhaust, specifically oxides of nitrogen and hydrocarbons, have been identified as major ozone precursors in urban areas. Past research has concentrated on assessing the impact of emissions from gasoline fueled light duty vehicles. However, little work has been done on identifying ozone precursors from medium and heavy duty diesel fueled vehicles. This paper presents the results of testing performed on a Navistar T 444E 190 horsepower diesel engine which is certified as a light/heavy-duty emissions classification and is used in medium duty trucks up to 11,800 kg (26,000 lb) GVW. Regulated emissions and speciated hydrocarbon emissions were collected using a filter, bag and Tenax adsorption cartridges for both steady state and transient engine operation.
Technical Paper

Solid State Electrochemical Cell for NOx Reduction

1992-08-03
929418
An electrochemical cell is presented which reduces NOx emissions from a vehicle fueled by dedicated natural gas. The cell is comprised of a honeycomb shaped ceramic which is chemically coated with an electrically conductive material in two distinct regions which serve as electrodes such that, with the application of a voltage potential, a cathode and anode are formed. As the exhaust gas flows through the inner channels of the cell, the electrochemical reduction of NOx at the cathode yields nitrogen gas and oxide ions. The nitrogen continues to flow through the cell while the oxide ions dissolve in the solid electrolyte. At the anodic zone, oxide ions are converted to oxygen gas. The pressure drop across the cell was experimentally measured to insure that the back pressure created by the cell does not create a significant reduction in the efficiency of the engine.
Technical Paper

Rotor Shaft Bearing Analysis for Selected Rand Cam™ Engine Configurations

1995-02-01
950449
Analysis of two types of bearings has been performed for the rotor shaft of the Rand Cam™ engine. Rolling element bearings and a combination of journal and thrust bearings for selected engine configurations have been considered. The engine configurations consist of four, five, six, seven, and eight vanes. The bearing geometry and orientation was also addressed. This analysis is crucial due to the potentially large axial loading on the bearings and the need for the bearing arrangement to be compact and reliable. An emphasis was placed on the combination of fluctuating axial and radial loads and the resulting effect upon the bearings. Tapered roller bearings were found to be effective. However, a combination of journal and thrust bearings is a more compact bearing arrangement for this application. The eight vane configuration is the most desirable configuration based upon the bearing analysis.
Technical Paper

Relationships Between Instantaneous and Measured Emissions in Heavy Duty Applications

2001-09-24
2001-01-3536
Selective Catalytic Reduction (SCR), using urea injection, is being examined as a method for substantial reduction of oxides of nitrogen (NOx) for diesel engines, but the urea injection rates must be controlled to match the NOx production which may need to be predicted during open loop control. Unfortunately NOx is usually measured in the laboratory using a full-scale dilution tunnel and chemiluminescent analyzer, which cause delay and diffusion (in time) of the true manifold NOx concentration. Similarly, delay and diffusion of measurements of all emissions cause the task of creating instantaneous emissions models for vehicle simulations more difficult. Data were obtained to relate injections of carbon dioxide (CO2) into a tunnel with analyzer measurements. The analyzer response was found to match a gamma distribution of the input pulse, so that the analyzer output could be modeled from the tunnel CO2 input.
Technical Paper

Relationship between Carbon Monoxide and Particulate Matter Levels across a Range of Engine Technologies

2012-04-16
2012-01-1346
Relationships between diesel particulate matter (PM) mass and gaseous emissions mass produced by engines have been explored to determine whether any gaseous species may be used as surrogates to infer PM quantitatively. It was recognized that sulfur content of fuel might independently influence PM mass, since PM historically is composed of elemental carbon, organic carbon, sulfuric acid, ash and wear particles. Previous research has suggested that PM may be correlated with carbon monoxide (CO) for an engine that is exercised through a variety of speed and load cycles, but that the correlation does not extend to a group of engines. Large databases from the E-55/59 and Gasoline/Diesel PM Split programs were employed, along with the IBIS bus emissions database and several additional data sets for on- and off-road engines to examine possible relationships.
Book

Prototype Powertrain in Motorsport Endurance Racing

2018-08-01
Racing continues to be the singular, preeminent source of powertrain development for automakers worldwide. Engineering teams rely on motorsports for the latest prototype testing and research. Endurance racing provides the harshest and most illuminating stage for system design validation of any motorsport competition. While advancements throughout the 20th Century brought about dramatic increases in engine power output, the latest developments from endurance racing may be more impactful for fuel efficiency improvements. Hybrid powertrains are a critical area of research for automakers and are being tested on the toughest of scales. Prototype Powertrain in Motorsport Endurance Racing brings together ten vital SAE technical papers and SAE Automotive Engineering magazine articles surrounding the advancements of hybrid powertrains in motorsports.
Technical Paper

Performance of a High Speed Engine with Dual Fuel Capability

1994-03-01
940517
Concern over dwindling oil supplies has led to the adoption of alternate fuels to power fleet vehicles. However, during the interim period when alternate fuel supply stations are few and far between, dual fuel engines prove a necessity. In the light duty arena, these engines are typically gasoline engines modified to accommodate compressed natural gas (CNG) as an alternate fuel, but they are seldom optimized with both fuels in mind. A Saturn 1.9 liter 4 cylinder dual overhead cam engine was selected as a base for developing an optimized gasoline/CNG powerplant. Baseline data on power and steady state emissions (CO2, CO, NOx, HC) were found using the standard Saturn controller. In addition to monitoring standard sensor measurements, real-time pressure traces were taken for up to 256 cycles using a modified head with embedded PCB piezoelectric pressure transducers.
Technical Paper

Mutagenic Potential of Particulate Matter from Diesel Engine Operation on Fischer-Tropsch Fuel as a Function of Engine Operating Conditions and Particle Size

2002-05-06
2002-01-1699
Further growth of diesel engines in the light-duty and heavy-duty vehicular market is closely linked to the potential health risks of diesel exhaust. The California Air Resources Board and the Office of Environmental Health Hazard Assessment have identified diesel exhaust as a toxic air contaminant. The International Agency for Research on Cancer concluded that diesel particulate is a probable human carcinogen [1]. Cleaner burning liquid fuels, such as those derived from natural gas via the Fischer-Tropsch (FT) process, offer a potentially economically viable alternative to standard diesel fuel while providing reduced particulate emissions. Further understanding of FT operation may be realized by investigating the differences in toxicity and potential health effects between particulate matter(PM) derived from FT fuel and that derived from standard Federal diesel No. 2 (DF).
Journal Article

Investigation of Relationship between System Efficiency Curve & Measurement and Verification (M&V) of Energy Savings

2011-04-12
2011-01-0324
This research attempts to investigate the effect of change in system curve on the energy intensity method of measurement and verification of energy savings. With recent push from US government on energy efficiency through EPACT 2007 and upturn in performance contracted energy efficiency project implementations the effective and accurate evaluation of energy savings as compared to the baseline is of paramount importance. The authors have studied different methods of Measurement and Verification (M&V) of energy savings from literature to compare and contrast and clearly bring out merits and de-merits of each. Finally, the role of production level variable plays in establishing the baseline energy usage is discussed. Though modern models proposed in the literature of determining baseline energy usage consider production level, this variable is compounded from two variables viz., time of usage of a system and fraction of total capacity usage.
Technical Paper

Interim Results from Alternative Fuel Truck Evaluation Project

1999-05-03
1999-01-1505
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins L10-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 3176B Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.
Technical Paper

Initial Investigations of a Novel Engine Concept for Use with a Wide Range of Fuel Types

1992-02-01
920057
The recent oil crisis has once again emphasized the need to develop both fuel efficient engines and alternately fueled engines, particularly for automotive applications. Engines which burn coal or coal pyrolysis products are attractive, but ignition delay and metal erosion problems continue to limit high speed operation of such engines. Further, the throttled spark ignition engine often used with methanol and natural gas does not prove an efficient or tolerant device for the combustion of a wide range of fuel. Therefore, an novel approach must be taken in order to achieve the efficient and flexible operation of such an engine. A novel design of a fuel tolerant engine suitable for burning coal fuels separates the combustion from the piston in order to have more careful flame control and to exclude the particulate matter from the engine's piston rings.
Technical Paper

In-Cylinder Combustion Pressure Characteristics of Fischer-Tropsch and Conventional Diesel Fuels in a Heavy Duty CI Engine

1999-05-03
1999-01-1472
The emissions reduction benefits of Fischer-Tropsch (FT) diesel fuel have been shown in several recent published studies in both engine testing and in-use vehicle testing. FT diesel fuel shows significant advantages in reducing regulated engine emissions over conventional diesel fuel primarily to: its zero sulfur specification, implying reduced particulate matter (PM) emissions, its relatively lower aromaticity, and its relatively high cetane rating. However, the actual effect of FT diesel formulation on the in-cylinder combustion characteristics of unmodified modern heavy-duty diesel engines is not well documented. As a result, a Navistar T444E (V8, 7.3 liter) engine, instrumented for in-cylinder pressure measurement, was installed on an engine dynamometer and subjected to steady-state emissions measurement using both conventional Federal low sulfur pump diesel and a natural gas-derived FT fuel.
X