Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Elasticity Solution of Angle-Ply Laminated Composite Shells Based on a Higher-Order FE Analysis

1994-03-01
940617
In the case of advanced light weight material applications, the design of such components, in many cases, are based on applied surface tractions These surface loads can be caused by various means. When wind effects are present these tractions can be due to pressure, suction or drag. In the case of underwater applications, hydrostatic pressure and friction caused by moving against water current needs to be considered in the design. These are some of the traction load applications, a design engineer has to deal with in his advanced material applications. In contrast to the conventional materials, the modern structures made of highly directional dependent material properties, respond the applied loads and environment in an unpredicted way, so that, a detail analysis and design is always necessary. Hence in the present study a higher-order shear deformation formulation is developed to calculate the distribution of stresses accurately in angle-ply laminated shells of revolution.
Technical Paper

A Parametric Study of Laminated Composite Shells with Environmental Effects, Using a Higher-Order FE Model

1994-03-01
940616
In this study a higher-order shear deformable, analytical model is developed to analyze composite shells with parametric modeling capabilities. The material and geometric properties and loading conditions can be varied as parameters which satisfy a set of constraints to allow the designer to achieve a sensible and computationally feasible FE model. The formulation is derived with equal emphasis on all the six strain as well as stress components at a generic point in the shell laminate. Unlike many other available models which violates the equilibrium conditions at lamina interfaces, this model satisfies the equilibrium conditions at the lamina interfaces for a certain class (angle-ply and unidirectional orthotropic) of laminates.
X