Refine Your Search


Search Results

Technical Paper

A New Approach to Developing Digital 3-D Headforms

Facial measurements were collected during the 2003 National Institute for Occupational Safety and Health (NIOSH) survey of 3,997 respirator users. In addition to traditional measuring techniques, 1013 subjects were scanned with a Cyberware 3-D Rapid Digitizer. Ten facial dimensions relevant to respirator fit were chosen for defining a principal component analysis (PCA) model which divides the user population into five face-size categories. Mean facial dimensions were then computed as a goal for a representative headform for each size category and used to identify 5 scans in each category. An average of the five scanned subjects was used to develop a single standard headform for each face-size category. Four digital 3-D models were developed: small, medium, large, and long. The new headforms include facial features not found on current standard headforms.
Technical Paper

A Parametric Study of Laminated Composite Shells with Environmental Effects, Using a Higher-Order FE Model

In this study a higher-order shear deformable, analytical model is developed to analyze composite shells with parametric modeling capabilities. The material and geometric properties and loading conditions can be varied as parameters which satisfy a set of constraints to allow the designer to achieve a sensible and computationally feasible FE model. The formulation is derived with equal emphasis on all the six strain as well as stress components at a generic point in the shell laminate. Unlike many other available models which violates the equilibrium conditions at lamina interfaces, this model satisfies the equilibrium conditions at the lamina interfaces for a certain class (angle-ply and unidirectional orthotropic) of laminates.
Technical Paper

An Approach to Simulate Chassis Dynamometer Test Cycles with Engine Dynamometer Test Cycles for Heavy-Duty Urban Buses

A mathematical model has been developed to transfer Chassis Dynamometer (CD) test cycles for heavy duty vehicles to the equivalent Engine Dynamometer (ED) test cycles. The model assumed a generalized drivetrain layout, and a variable drive line efficiency. An interactive computer code was written to represent the mathematical model for different drivetrain systems. Several CD test cycles were used to obtain equivalent ED test cycles for a sample based upon an urban bus equipped with an automatic transmission. Results showed the possibility of simulating CD test cycles with equivalent ED test cycles for heavy-duty urban buses under certain assumptions.
Technical Paper

An Elasticity Solution of Angle-Ply Laminated Composite Shells Based on a Higher-Order FE Analysis

In the case of advanced light weight material applications, the design of such components, in many cases, are based on applied surface tractions These surface loads can be caused by various means. When wind effects are present these tractions can be due to pressure, suction or drag. In the case of underwater applications, hydrostatic pressure and friction caused by moving against water current needs to be considered in the design. These are some of the traction load applications, a design engineer has to deal with in his advanced material applications. In contrast to the conventional materials, the modern structures made of highly directional dependent material properties, respond the applied loads and environment in an unpredicted way, so that, a detail analysis and design is always necessary. Hence in the present study a higher-order shear deformation formulation is developed to calculate the distribution of stresses accurately in angle-ply laminated shells of revolution.
Technical Paper

Analysis of RF Corona Discharge Plasma Ignition

Corona discharge from a RF quarter wave coaxial cavity resonator is considered as a plasma ignition source for spark ignited (SI) internal combustion (IC) engines. The gaseous discharge processes associated with this device are analyzed using principles of gas kinetics and gaseous electronics, with assumed values for the electric field strength. Corona discharge occurs when the electric field shaped and concentrated by a single electrode exceeds the breakdown potential of the surrounding gas. Ambient electrons, naturally present due to ionizing radiation, drift in the direction of the externally applied field, gaining energy while undergoing elastic collisions with neutral molecules. After gaining sufficient energy they dissociate, excite, or ionize the neutral particles through inelastic collision, creating additional electrons. This process leads to avalanche electrical breakdown of the gas within about 10-8 sec.
Technical Paper

Automobile Body Panel Color Measurement Test

It has been proposed that an automated remote color inspection of automobile body panels is possible with a reasonably precise color measurement. This paper outlines a test of a new 3D color measurement technology as applied to this task and presents the results of the first test. A camera is set up several feet away from a car body; a 3D orientation measuring system takes both 3D and color data from the car. The raw data is presented as a set of 3D graphs; the geometry-corrected data is also provided. Statistical analysis is presented to indicate system precision.
Technical Paper

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of the year and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to NG spark ignition simulated lean-combustion engine operation at low speed and medium load conditions. The work investigated three NG blends with similar lower heating value (i.e., similar energy density) but different Methane Number (MN). The results indicated that a lower MN increased flame propagation speed and thus increased in-cylinder pressure and indicated mean effective pressure.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

Crash Analysis Response of a Midsize Car Subjected to Side Impact

Crashworthiness is a measure of a vehicle's structural integrity during mechanical impact and of its ability to absorb energy and provide occupant protection in crash situations. Finite element modeling has been successfully used to simulate collision events; the present work uses these techniques to simulate the side impact of a mid-size car in order to investigate the crash characteristics of a 45 km/hr impact. Five different analyses were conducted on orthogonal and oblique impacts under varying conditions. The numerical results from the first analysis were compared with published experimental crash results, showing favorable comparisons for this numerical model prediction.
Technical Paper

Development and Testing of a Tag-based Backup Warning System for Construction Equipment

Incidents in which a piece of construction equipment backed into a worker resulted in an average of 17 deaths per year at road construction sites and 15 deaths per year at building construction sites from 1997 through 2001. This trend continues and researchers at the National Institute for Occupational Safety and Health are evaluating methods to decrease these incidents. A new technology based on the detection of electronic identification tags worn by workers has been developed and evaluated at a road construction site. The tag-based proximity warning system consists of a magnetic field generator and communications system that mounts on the back of a piece of construction equipment such as a dump truck, road grader, or loader. Workers at a construction site wear a small tag that detects the magnetic marker field.
Technical Paper

Development of A Microwave Assisted Regeneration System for A Ceramic Diesel Particulate System

Specific aspects of a study aimed at developing a microwave assisted regeneration system for diesel particulate traps are discussed. Results from thermal and microwave characteristic studies carried out in the initial phase of the study are reported. The critical parameters that need to be optimized, for achieving controlled regeneration, are microwave preheating time period, regenerative air supply, regenerative air temperature, and soot deposition. Using a 1000 W magnetron, power measurements were made to select the best waveguide configuration for optimized transmission. A six cylinder naturally aspirated, indirect injection diesel engine was retrofitted with a customized exhaust system that included a Corning EX80 (5.66″ × 6.00″) type ceramic particulate trap. An automated exhaust bypass system enabled trap loading and subsequent regeneration with a customized microwave regeneration system. The paper discusses the salient details of both on-line and off-line regeneration setups.
Technical Paper

Digital Human Modeling Goals and Strategic Plans

Digital human modeling (DHM) progress worldwide will be much faster and cohesive if the diverse community now developing simulations has a global blueprint for DHM, and is able to work together efficiently. DHM developers and users can save time by building on each other's work. This paper highlights a panel discussion on DHM goals and strategic plans for the next decade to begin formulating the international blueprint. Four subjects are chosen as the starting points: (1) moving DHM into the public safety and internet arenas, (2) role of DHM in computer assisted surgery and automotive safety, (3) DHM in defense applications, and (4) DHM to improve workplace ergonomics.
Technical Paper

Digitization of Farm Tractors and Body Models for the Evaluation of Farm Tractors

Feature-envelope technique is a method that describes the spatial location and orientation of areas or landmarks of interest with respect to a well-defined, easily duplicated coordinate system. This technique has been tested in a NIOSH study in guiding tractor designers in their placement of tractor control components in order to best accommodate the user population. NIOSH recently measured the human body dimensions of 100 West Virginia farm workers, including whole body surface scans, to examine body size accommodation issues associated with safe farm tractor operation and rollover protective structures. Multivariate anthropometric models were derived from this population based on measurements related to the workstation. The Euclidian distance of each subject for each model was computed, and those that scored the closest were identified as “nearest neighbors.”
Technical Paper

Engineering Modeling and Synthesis of a Rand Cam Engine Through CAD Parametric Techniques

In this paper an approach is presented for the system parameterization and synthesis of a Rand-Cam® Engine configuration based on an axial-cylindrical cam driven mechanism. This engine consists of a stationary axial-cylindrical cam on which axially moving pistons (vanes) sweep around the cam as they are driven by the rotor, providing the volume displacement as the rotor delivers the rotary output torque directly to the shaft. It has been documented that this engine configuration has some unique features that make it particularly suitable for high power to weight ratio applications. The modeling strategy makes use of higher order curve and surface modeling techniques and object modeling approaches based on profile extruding, blending operations and constructive solid geometry. Some of the resulting models are further used for finite element engineering analysis through a programmatic logic built into the parameterized general model.
Technical Paper

Finite Element Analysis for the Interface of a Respirator and the Human Face -A Pilot Study

Comfort assessment of respirator fit plays an important role in the respirator design process and standard development. To reduce the cost and design time of respirators, the design, fit, and evaluation process can be performed in a virtual environment. Literature shows that respirator-induced discomfort relates to stress, area, and region of the face covered. In this work, we investigate the relationship between the strap tensions and the stress and deformation distribution on the interface between the respirator and the headform. This is the first step towards a comprehensive understanding of the contribution of contact stress to the mathematical comfort fit model. The 3D digital models for respirators and headforms have been developed based on 3D scanning point-cloud using a Cyberware® 3D digitizer. Five digital headform models have been generated: small, medium, large, long and short.
Journal Article

Finite Element Analysis of Composite Over-wrapped Pressure Vessels for Hydrogen Storage

This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The optimal design configuration of such high pressure storage tanks includes an inner liner used as a gas permeation barrier, geometrically optimized domes, inlet/outlet valves with minimum stress concentrations, and directionally tailored exterior reinforcement for high strength and stiffness. Filament winding of pressure vessels made of fiber composite materials is the most efficient manufacturing method for such high pressure hydrogen storage tanks. The complexity of the filament winding process in the dome region is characterized by continually changing the fiber orientation angle and the local thickness of the wall.
Technical Paper

Ideal Computer Analysis of a Novel Engine Concept

A novel engine concept, currently under study, addresses many of the problems commonly associated with conventional internal combustion engines. In its simplest form the novel engine consists of a single crankshaft operating both a piston compressor and a piston expander which are connected by a continuous flame combustion chamber. One might regard this as a Brayton piston engine which is similar to a previous engine investigated by Warren. Also, due to the use of piston cylinders as the compression and expansion devices, this engine varies little mechanically from current engine technology thus allowing for easy implementation. The main improvement from conventional engine design is that the expansion cylinder can have a larger displacement than that of the compression cylinder. This allows more power to be extracted by lowering the loss due to blowdown and this will increase the thermal efficiency.
Technical Paper

Identifying Less Stressful Work Methods: Computer-aided Simulation vs. Human Subject Study

Engineering analyses of work methods can help identify approaches to reduce the risk of occupational injuries; computer-aided simulation technology is effective in terms of time and cost for evaluating multiple work methods. This paper analyzed scaffolding, a common activity in construction with high frequency of overexertion injuries, through a computer simulation model (3DSSPP) to identify less stressful work strategies. A laboratory study was also performed to verify the appropriateness of using the model for scaffolding job analyses. Seven commonly used end-frame lifting techniques were evaluated. Computer simulations of these work techniques show that considerable biomechanical stress occurs to most of the workers at their shoulders and elbows. A symmetric front-lifting at knuckle height appears to be the less stressful work technique, as determined by computer simulation.
Technical Paper

Innovative Dense Lightweight Design for On-Board Hydrogen Storage Tank

The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use on-board vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. The main emphasis of this work is placed on the high -pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 350 to 700 bars for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs.
Technical Paper

Innovative Design Concepts for Lightweight Floors in Heavy Trailers

Currently, the chassis assembly contributes about 73 percent of the overall weight of a 14.63 m long haul trailer. This paper presents alternative design concepts for the structural floor of a van trailer utilizing sandwich panels with various material and geometric characteristics of the core layer in order to reduce its weight significantly below that of the current design configuration. The main objective of the new designs is to achieve optimal tradeoffs between the overall structural weight and the flexural stiffness of the floor. Various preliminary design concepts of the core designs were compared on the basis of a single section of the core structure. Six different designs were analyzed by weight, maximum displacement and maximum stress under bending and torsion loads. Each concept was kept uniform by length, thickness, loading and boundary conditions. Each design concept was examined through testing of scaled model for floor assemblies.