Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Use of the West Virginia University Truck Test Cycle to Evaluate Emissions from Class 8 Trucks

1995-02-01
951016
Emissions from light duty vehicles have traditionally been measured using a chassis dynamometer, while heavy duty testing has been based on engine dynamometers. However, the need for in-use vehicle emissions data has led to the development of two transportable heavy duty chassis dynamometers capable of testing buses and heavy trucks. A test cycle has been developed for Class 8 trucks, which typically have unsyncronized transmissions. This test cycle has five peaks, each consisting of an acceleration, cruise period, and deceleration, with speeds and acceleration requirements that can be met by virtually all vehicles in common service. Termed the “WVU 5 peak truck test”, this 8 km (5 mile) cycle has been used to evaluate the emissions from diesel and ethanol powered over-the-road tractors and from diesel and ethanol powered snow plows, all with Detroit Diesel 6V92 engines.
Technical Paper

US National Laboratory R&D Programs in Support of Electric and Hybrid Electric Vehicle Batteries

2002-06-03
2002-01-1948
The successful commercialization of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) can provide significant benefits by reducing the United States' growing dependence on petroleum fuels for transportation; decreasing polluting and greenhouse gas emissions; and facilitating a long-term transition to sustainable renewable energy sources. Recognizing these benefits, the U.S. Department of Energy (DOE) supports an active program of long-range R&D to develop electric vehicle (EV) and hybrid electric vehicle (HEV) technologies and to accelerate their commercialization. The DOE Office of Advanced Automotive Technologies (OAAT) supports several innovative R&D programs, conducted in partnership with DOE's national laboratories, industry, other government agencies, universities, and small businesses. The Office has two key R&D cooperative agreements with the U.S. Advanced Battery Consortium (USABC) to develop high-energy batteries for EVs and high-power batteries for HEVs.
Technical Paper

Turbocharging a Bi-Fuel Engine for Performance Equivalent to Gasoline

1994-10-01
942003
A bi-fuel engine capable of operating either on compressed natural gas (CNG) or gasoline is being developed for the transition to alternative fuel usage. A Saturn 1.9 liter 4-cylinder engine was selected as a base powerplant. A control system that allows closed-loop optimization of both fuel delivery and spark timing was developed. Stock performance and emissions of the engine, as well as performance and emissions with the new controller on gasoline and CNG, have been documented. CNG operation in an engine designed for gasoline results in power loss because of the lower volumetric efficiency with gaseous fuel use, yet such an engine does not take advantage of the higher knock resistance of CNG. It is the goal of this research to use the knock resistance of CNG to recover the associated power loss. The two methods considered for this include turbocharging with a variable boost wastegate and raising the compression ratio while employing variable valve timing.
Technical Paper

Transient Response in a Dynamometer Power Absorption System

1992-02-01
920252
In order to obtain meaningful analyses of exhaust gas emissions and fuel economy for a heavy duty vehicle from a chassis dynamometer, the accurate simulation of road load characteristics is crucial. The adjusted amount of power to be absorbed by the chassis dynamometer during road driving of the tested vehicle needs to be calculated. In this paper, the performance of the chassis dynamometer under transient load cycle operations is discussed and the transient response of the power absorption system is presented. In addition, the design criteria of the chassis dynamometer used to test heavy duty vehicles under steady and transient load is described.
Technical Paper

Transient Emissions Tests of Cummins N-14 Natural Gas Engine

1995-11-01
952653
A heavy-duty engine testing project involving Cummins Engine Company, Southwest Research Institute (SwRI), and West Virginia University (WVU) has been completed. This project evaluated the transient exhaust gas emissions rate of Cummins N-14 heavy-duty diesel engines converted to natural gas. Three heavy-duty N-14 diesel engines were converted to run on natural gas using a lean burn strategy by SwRI and are in field service in Santa Barbara Air Pollution Control District (SBAPCD). Two of the engines were tested under a steady-state cycle that simulates the U.S. heavy-duty transient cycle. The third engine was tested at the WVU Engine Research Laboratory following the U.S. Federal Test Procedure (FTP). However, at WVU, lean burn combustion strategy was shifted rich of stoichiometric during idling time of the FTP test. This may have caused the engine to produce more total hydrocarbons (THC) and carbon monoxide (CO).
Technical Paper

The Future of the Internal Combustion Engine After “Diesel-Gate”

2017-07-10
2017-28-1933
The paper captures the recent events in relation with the Volkswagen (VW) Emissions Scandal and addresses the impact of this event on the future of power train development. The paper analyses the impact on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based technology. The operation of the United States Environmental Protection Agency (EPA), VW and the United States prosecutor, sparked by the action of the International Council on Clean Transportation (ICCT) is forcing the Original Equipment Manufacturers (OEM) towards everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) technology, and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
Technical Paper

The Exhaust Emissions of Prototype Ultra-Low Sulfur and Oxygenated Diesel Fuels

2005-10-24
2005-01-3880
A 1.3-L direct injection diesel engine was used in steady-state testing to determine the emissions performance of a matrix of ultra-low sulfur diesel fuels encompassing two types of sulfur removal and the use of fuel oxygenates. As expected, exhaust gas recirculation was the most effective technique for NOx reduction. With regard to fuel effects, an oxygenated diesel fuel produced with a conventional sulfur removal process reduced particulate emissions substantially, and these particulate reductions could be converted into NOx reductions by using higher levels of exhaust gas recirculation. On a simulated FTP, this oxygenated fuel simultaneously decreased NOx emissions by 30% and total particulate emissions by 50% compared to a baseline fuel.
Technical Paper

The Emissions Performance of Oxygenated Diesel Fuels in a Prototype DI Diesel Engine

2001-03-05
2001-01-0650
As part of a cooperative development program, six diesel fuels (a reference and five blends containing oxygenates) were evaluated under four steady-state conditions using a prototype 1.26-L 3-cylinder four-valve common-rail DI diesel engine. All of the fuels contained low sulfur (mostly < 5 ppm by mass), and they were chosen to determine the impacts of oxygenate volatility, concentration, and chemical type (paraffinic or aromatic) on exhaust emissions - with particular emphasis on particulate emissions. In addition to HC, CO, NOx and PM emissions measurements, emissions of the volatile portion of the PM and particle size were determined. Relative to the very low sulfur reference fuel, the oxygenated fuels reduced PM and NOx under some operating conditions, but produced little effect on either HC or CO emissions. Aliphatic oxygenates at 6 wt. percent oxygen in the reference fuel reduced simulated FTP PM emissions by 15 - 27 %.
Technical Paper

The Effect of Sulphur-Free Diesel Fuel on the Measurement of the Number and Size Distribution of Particles Emitted from a Heavy-Duty Diesel Engine Equipped with a Catalysed Particulate Filter

2003-10-27
2003-01-3167
Following concern about the association between adverse health effects and ambient particulate concentrations, there are now an increasing number of heavy-duty Diesel engines fitted with catalysed particulate filters. These filters virtually eliminate carbon particle emissions but there is some evidence suggesting a potential to form a cloud of secondary nucleation particles post trap. This event occurs at high temperature operating conditions and is produced mainly from the increased sulphate production over the catalyst. This paper investigates the measurement of particle emissions from a heavy-duty engine operating over the European legislated cycle, both with and without a filter fitted and investigates how emissions are affected by the use of a sulphur-free Diesel fuel. The work also demonstrates a contribution to the measured nucleation particles from material desorbed not only from the trap, but also from the exhaust system.
Technical Paper

The Effect of Diesel Fuel Properties on Engine-out Emissions and Fuel Efficiency at Mid-Load Conditions

2009-11-02
2009-01-2697
The influence of various diesel fuel properties on the steady state emissions and performance of a Cummins light-duty (ISB) engine modified for single cylinder operation has been studied at the mid-load “cruise” operating condition. Designed experiments involving independent manipulation of both fuel properties and engine control parameters have been used to build statistical engine response models. The models were then applied to optimize for the minimum fuel consumption subject to specific constraints on emissions and mechanical limits and also to estimate the optimum engine control parameter settings and fuel properties. The study reveals that under the high EGR, diffusion-burn dominated conditions encountered during the experiments, NOx is impacted by cetane number and the distillation characteristics. Lower T50 (mid-distillation temperature) resulted in simultaneous reductions in both NOx and smoke, and higher cetane number provided an additional small NOx benefit.
Journal Article

The Effect of Cetane Improvers and Biodiesel on Diesel Particulate Matter Size

2011-04-12
2011-01-0330
Heavy-duty diesel engines (HDDE), because of their widespread use and reputation of expelling excessive soot, have frequently been held responsible for excessive amounts of overall environmental particulate matter (PM). PM is a considerable contributor to air pollution, and a subject of primary concern to health and regulatory agencies worldwide. The U.S. Environmental Protection Agency (EPA) has provided PM emissions regulations and standards of measurement techniques since the 1980's. PM standards set forth by the EPA for HDDEs are based only on total mass, instead of size and/or concentration. The European Union adopted a particle number emission limit, and it may influence the U.S. EPA to adopt particle number or size limits in the future. The purpose of this research was to study the effects biodiesel blended fuel and cetane improvers have on particle size and number.
Technical Paper

The Design of a Bi-Fuel Engine Which Avoids the Penalties Associated with Natural Gas Operation

1995-02-01
950679
An alternative fuel that has demonstrated considerable potential in reducing emissions and crude oil dependence is compressed natural gas (CNG). A dedicated CNG vehicle suffers from the lack of an adequate number of fueling stations and the poor range limited by CNG storage technology. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. Although many such bi-fuel vehicles are in existence, historically they have employed older engine designs and made compromises in engine control parameters that can degrade performance relative to gasoline and increase emissions. A modern production engine, a 1992 Saturn 1.9 liter 16 valve powerplant, is being optimized for operation on each fuel to realize the full potential of CNG in a bi-fuel system. CNG operation in an engine designed for gasoline typically suffers from reduced power, due in part to displacement of air by gaseous fuel.
Technical Paper

The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

2001-05-14
2001-01-2068
This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Speciation of Hydrocarbon Emissions from a Medium Duty Diesel Engine

1996-02-01
960322
Growing concern over ground-level ozone and its role in smog formation has resulted in extensive investigation into identifying ozone sources. Motor vehicle exhaust, specifically oxides of nitrogen and hydrocarbons, have been identified as major ozone precursors in urban areas. Past research has concentrated on assessing the impact of emissions from gasoline fueled light duty vehicles. However, little work has been done on identifying ozone precursors from medium and heavy duty diesel fueled vehicles. This paper presents the results of testing performed on a Navistar T 444E 190 horsepower diesel engine which is certified as a light/heavy-duty emissions classification and is used in medium duty trucks up to 11,800 kg (26,000 lb) GVW. Regulated emissions and speciated hydrocarbon emissions were collected using a filter, bag and Tenax adsorption cartridges for both steady state and transient engine operation.
Technical Paper

Speciation of Heavy Duty Diesel Exhaust Emissions under Steady State Operating Conditions

1996-10-01
962159
This paper presents results from a study on speciation of the emission profiles and on the ozone forming potential of heavy-duty diesel exhaust under steady state engine operation. Very limited attempts have been made at determining the ozone forming potential of heavy duty diesel exhaust emissions. In this study a proportional sample of the dilute exhaust was drawn from a CFV-CVS system using a temperature controlled sampling line. The particulate matter was collected on a 70 mm Teflon coated glass fiber filter (TX40HI20WW), the semi-volatiles on XAD-2 copolymer resin and volatiles in Tedlar bags. The samples were analyzed by gas chromatography after conditioning and chemical extractions. The initial phase of the study was directed towards developing techniques and establishing protocols to determine the ozone forming potential of heavy-duty diesel exhaust. A pre-chamber naturally aspirated engine was tested on steady-state modes 1, 3, 5, 7 and 8 of the ISO 8 mode cycle.
Technical Paper

Solid State Electrochemical Cell for NOx Reduction

1992-08-03
929418
An electrochemical cell is presented which reduces NOx emissions from a vehicle fueled by dedicated natural gas. The cell is comprised of a honeycomb shaped ceramic which is chemically coated with an electrically conductive material in two distinct regions which serve as electrodes such that, with the application of a voltage potential, a cathode and anode are formed. As the exhaust gas flows through the inner channels of the cell, the electrochemical reduction of NOx at the cathode yields nitrogen gas and oxide ions. The nitrogen continues to flow through the cell while the oxide ions dissolve in the solid electrolyte. At the anodic zone, oxide ions are converted to oxygen gas. The pressure drop across the cell was experimentally measured to insure that the back pressure created by the cell does not create a significant reduction in the efficiency of the engine.
Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
X