Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Heavy-Duty Compression-Ignition Engines Retrofitted to Spark-Ignition Operation Fueled with Natural Gas

2019-09-09
2019-24-0030
Natural gas is a promising alternative gaseous fuel due to its availability, economic, and environmental benefits. A solution to increase its use in the heavy-duty transportation sector is to convert existing heavy-duty compression ignition engines to spark-ignition operation by replacing the fuel injector with a spark plug and injecting the natural gas inside the intake manifold. The use of numerical simulations to design and optimize the natural gas combustion in such retrofitted engines can benefit both engine efficiency and emission. However, experimental data of natural gas combustion inside a bowl-in-piston chamber is limited. Consequently, the goal of this study was to provide high-quality experimental data from such a converted engine fueled with methane and operated at steady-state conditions, exploring variations in spark timing, engine speed and equivalence ratio.
Technical Paper

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

2019-09-09
2019-24-0008
Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of the year and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to NG spark ignition simulated lean-combustion engine operation at low speed and medium load conditions. The work investigated three NG blends with similar lower heating value (i.e., similar energy density) but different Methane Number (MN). The results indicated that a lower MN increased flame propagation speed and thus increased in-cylinder pressure and indicated mean effective pressure.
X